i. To find c
$$∫_{-∞}^∞∫_{-∞}^∞f_{XY} (x,y) dx dy=1$$
$$∫_0^4∫_1^5cxydxdy=1$$
$$c\left[\frac{x^2}{2}\right]_0^4\left[\frac{y^2}{2}\right]_1^5$$
$$c(8)(12)=1$$
$$∴c=\frac{1}{96}$$
Hence $f_{XY} (x,y)=\frac{1}{96} xy $ $0\lt x\lt 4, 1 \lt y \lt 5$
=0 otherwise
ii. To find P (X≥3, Y≤ 2)
$$P(X ≥ 3,Y ≤ 2)=∫_{x=3} ^ 4∫_0^2 f_{XY} (x,y)dxdy$$
$$=∫_{x=3}^4∫_0^2\frac{1}{96}xy dxdy$$
$$=\frac1{96}\left[\frac{x^2}{2}\right]_3^4\left[\frac{y^2}{2}\right]_0^2$$
$$P(X ≥ 3,Y ≤ 2)=\frac{7}{96}$$
iii. Find marginal distribution function of X
The marginal probability density function of X is
$$f_X (x)=∫_{-∞}^∞f_{XY} (x,y)dy$$
$$=∫_1^5\frac{1}{96} xy dy$$
$$=\frac{x}{96}\left[ \frac{y^2}{2}\right]_1^5$$
$f_X (x)=\frac{x}{8}$ $ 0\lt x\lt 4$
The marginal probability density function of Y is
$$f_Y (y)=∫_{-∞}^∞f_{XY} (x,y)dx $$
$$=∫_0^4\frac{1}{96} xy dx$$
$$=\frac{y}{96} \left[\frac{x^2}{2}\right]_0^4$$
$f_Y (y)=\frac{y}{12}$  :  :  : $1\lt y\lt 5$
Distribution Function: $$F_{XY} (x,y)=∫_{-∞}^x ∫_{-∞}^yf_{XY} (x,y)dxdy$$
$$=∫_0^x∫_1^y\frac{1}{96} xy dxdy$$
$$=\frac{1}{96}\left[\frac{x^2}{2}\right]_0^x\left[\frac{y^2}{2}\right]_1^y$$
$=\frac{1}{384} x^2 (y^2-1)$ $0 \lt x \lt 4, 1\lt y \lt 5$
$F_{XY} (x,y)=0$ x<0,y<1
$=\frac{1}{384} x^2 (y^{2}-1)$ $0 \lt x \lt 4, 1 \lt y \lt 5$
$ =1 $ $x≥4 y≥5$
Ans:-
i. $c=\frac{1}{96}$
ii. P(X ≥ 3,Y ≤ 2)=$\frac{7}{96}$
iii. Marginal probability density functions
$f_X (x)=\frac{x}8$ $ 0 \lt x \lt 4$
$f_Y (y)=\frac{y}{12}$ $1 \lt y \lt 5$