written 8.8 years ago by
teamques10
★ 69k
|
•
modified 8.8 years ago
|
i. To find c
∫∞−∞∫∞−∞fXY(x,y)dxdy=1
∫40∫51cxydxdy=1
c[x22]40[y22]51
c(8)(12)=1
∴c=196
Hence fXY(x,y)=196xy 0<x<4,1<y<5
=0 otherwise
ii. To find P (X≥3, Y≤ 2)
P(X≥3,Y≤2)=∫4x=3∫20fXY(x,y)dxdy
=∫4x=3∫20196xydxdy
=196[x22]43[y22]20
P(X≥3,Y≤2)=796
iii. Find marginal distribution function of X
The marginal probability density function of X is
fX(x)=∫∞−∞fXY(x,y)dy
=∫51196xydy
=x96[y22]51
fX(x)=x8 0<x<4
The marginal probability density function of Y is
fY(y)=∫∞−∞fXY(x,y)dx
=∫40196xydx
=y96[x22]40
fY(y)=y12  :  :  : 1<y<5
Distribution Function: FXY(x,y)=∫x−∞∫y−∞fXY(x,y)dxdy
=∫x0∫y1196xydxdy
=196[x22]x0[y22]y1
=1384x2(y2−1) 0<x<4,1<y<5
FXY(x,y)=0 x<0,y<1
=1384x2(y2−1) 0<x<4,1<y<5
=1 x≥4y≥5
Ans:-
i. c=196
ii. P(X ≥ 3,Y ≤ 2)=796
iii. Marginal probability density functions
fX(x)=x8 0<x<4
fY(y)=y12 1<y<5