0
9.1kviews
The joint density function of two continuous r.vs X and Y is

The joint density function of two continuous r.v's X and Y is

f(x, y) = cxy 0<x<4, 1<y<5

= 0 otherwise

Find the value of constant c

Find P(X3, Y2)

Find marginal distribution function of X

Mumbai University > Electronics and Telecommunication > Sem5 > Random Signal Analysis

Marks: 10M

Year: May 2015

1 Answer
0
918views

i. To find c

fXY(x,y)dxdy=1

4051cxydxdy=1

c[x22]40[y22]51

c(8)(12)=1

c=196

Hence fXY(x,y)=196xy       0<x<4,1<y<5

=0 otherwise

ii. To find P (X≥3, Y≤ 2)

P(X3,Y2)=4x=320fXY(x,y)dxdy

=4x=320196xydxdy

=196[x22]43[y22]20

P(X3,Y2)=796

iii. Find marginal distribution function of X

The marginal probability density function of X is

fX(x)=fXY(x,y)dy

=51196xydy

=x96[y22]51

fX(x)=x8       0<x<4

The marginal probability density function of Y is

fY(y)=fXY(x,y)dx

=40196xydx

=y96[x22]40

fY(y)=y12 &nbsp: &nbsp: &nbsp: 1<y<5

Distribution Function: FXY(x,y)=xyfXY(x,y)dxdy

=x0y1196xydxdy

=196[x22]x0[y22]y1

=1384x2(y21)     0<x<4,1<y<5

FXY(x,y)=0     x<0,y<1

=1384x2(y21) 0<x<4,1<y<5

=1         x4y5

Ans:-

i. c=196

ii. P(X ≥ 3,Y ≤ 2)=796

iii. Marginal probability density functions

fX(x)=x8         0<x<4

fY(y)=y12         1<y<5

Please log in to add an answer.