written 5.6 years ago by |
The damped period of vibration is limited to 2 sec and the amplitude of vibration should reduce to one sixteen in one cycle,
Find:
a] Spring stiffness.
b] Damping co efficient of the shock absorber.
$x_2 = \frac{1}{16} x_1$
n = 1
$x_2 = \frac{1}{16} x_1$
$\therefore$ $\frac{x_1}{x_2} = 16$
m = 200 kg
$T_d$ = 2 sec
$\delta = ln (\frac{x_1}{x_2}) = \ ln (16) = 2.77$
$\delta = \ \frac{2 \pi c_c}{\sqrt{1 - c_c^2}}$
$2.77 \ = \ \frac{2 \pi c_c}{\sqrt{1 - e_c^2}}$
$\xi$ = 0.4033
$w_n = \sqrt{ \frac{k}{m}}$
$w_d = w_n \sqrt{1 - \xi^2}$
$w_d = \frac{2 \pi }{T_d}$
$w_d = \frac{2 \pi }{2} = 3.14$ rad/s
$w_n = \frac{w_d}{\sqrt{1- \xi^2}}$
$= \frac{3.14}{\sqrt{1- 0.403^2}}$
$w_n = 3.43$ rad/sec
$w_n = \sqrt{\frac{k}{m}}$
$3.43 = \sqrt{\frac{k}{200}}$
K = 2352.98 N/m - - - Ans (1)
$\xi = \frac{c}{C_c} = \frac{c}{2m \ w_n}$
$0.403 = \frac{c}{2 \times 200 \times 3.43}$
C = 552.91 Ns/m - - - Ans (2)