written 5.5 years ago by |
Automata theory and Computability - Dec 17
Computer Science (Semester 5)
Total marks: 80
Total time: 3 Hours
INSTRUCTIONS
(1) Question 1 is compulsory.
(2) Attempt any three from the remaining questions.
(3) Draw neat diagrams wherever necessary.
Module - 1
OR
S | 0 | I |
---|---|---|
A | B | A |
B | A | C |
C | D | B |
*D | D | A |
E | D | F |
F | G | E |
G | F | E |
H | G | D |
i) Draw the table of distinguishable and indistinguishable state for the automata.
ii) Construct minimum state equivalent of automata.
Module - 2
States | 0 | 1 |
---|---|---|
$\rightarrow q_{1}$ | $q_{2}$ | $q_{1}$ |
$q_{2}$ | $q_{3}$ | $q_{1}$ |
*$q_{3}$ | $q_{3}$ | $q_{2}$ |
Obtain the regular expression $R_{i j}^{(0)}$ , $R_{i j}^{(1)}$ and simplify the regular expressions as much as possible.
ii) all strings containing no more than 3 a's.
iii) all strings that contain at least one occurance of each symbol in $\sum$
Indicate for each of the following regular expressions, whether it correctly describes L :
i) $(a \cup b a) b b^{*} a$
ii) $(\varepsilon \cup b) a\left(b b^{*} a\right)^{*}$
iii) ba $\cup a b^{*} a$
iv) $(a \cup b a)\left(b b^{*} a\right)^{+}$
OR
$\mathrm{S} \rightarrow \mathrm{iC}+\mathrm{S}|\mathrm{iC}+\mathrm{SeS}| \mathrm{a}$
$\mathrm{C} \rightarrow \mathrm{b}$
Module - 3
$\mathrm{S} \rightarrow \mathrm{ASB} | \varepsilon$
$\mathrm{A} \rightarrow \mathrm{aAS} | \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{A}| \mathrm{bb}$
$\mathrm{S} \rightarrow \mathrm{aB} | \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{a}|\mathrm{aS}| \mathrm{bAA}$
$\mathrm{B} \rightarrow \mathrm{b}|\mathrm{bS}| \mathrm{aBB}$
For the string aaabbbabbba find a
i) Left most derivation.
ii) Right most derivation
iii)Parse tree
OR
i) Pushdown automata (PDA).
ii) Languages of a PDA.
iii) Instantaneus description of a PDA.
Draw the graphical representation of this PDA. Show the moves made by this PDA for the string aabbaa.
$S \rightarrow a A B B |$ aAA
$A \rightarrow a B B | a$
$B \rightarrow b B B | A$
$C \rightarrow a$
Module - 4
i) Given a regular expression $\alpha$ and a PDA $M$ , the language accepted by M a subject of the language generated by $\alpha$ ? ii) GIven a context-free Grammar G and two strings $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ , does G generate $\mathrm{S}_{1} \mathrm{S}_{2}$ ? iii) GIven a context free Grammar G, does G generate any even length strings. iv) Given a Regular Grammar G, is L(G) context-free ? \lt/div\gt \ltspan class='paper-ques-marks'\gt(12 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt **OR** \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt8.a.\lt/b\gt Explain with neat diagram, the working of a Turning Machine model. \lt/div\gt \ltspan class='paper-ques-marks'\gt(5 marks)\lt/span\gt \ltspan class='paper-page-id'\gt00\lt/span\gt \lt/div\gt \ltDIV class='paper-question'\gt \ltDIV class='paper-ques-desc'\gt \ltb\gt8.b.\lt/b\gt Design a Turning machine to accept the language $L=\left{a^{a} b^{\prime} c^{k} | n>=1}right.$ . Draw the transition diagram. Show the moves made by this turing machine for the string aabbcc.
Module - 5
a. Multi-tape turing machine.
b. Non-deterministic turing machine.
c. Linear Bounded automata.
OR
a. Undecidable languages.
b. Halting problem of turing machine.
c. The post correspondence problem.