written 5.6 years ago by |
Q.3
Q.4
1] Newton's Method.
Assume, point of vibration at point 'P'
I T = e of all moments.
$+ I_p \theta = -kr \theta \times r$
$I_p \theta = -kr^2 \theta$
$I_p \theta + kr^2 \theta = 0$ . . . . . E O M
$\theta + \frac{kr^2}{I_p} \theta = 0$
To find IP, use parallel axis theorem.
$Ip - IG + m (dist)^2$
$= \frac{mr^2}{2} + mr^2$
$I_p = \frac{3mr^2}{2}$
$w_n = \sqrt{ \frac{kr^2}{Ip}} = \sqrt{ \frac{kr^2}{ \frac{3mr^2}{2}}} - \sqrt{ \frac{2kr^2}{3mr^2}} = \sqrt{ \frac{2k}{3m}} r/s$
Energy Method:
$KE = (KE)_m$ NOTE: Assume pure rolling motion.
$KE = (KE)rot$
$\frac{1}{2} I_p \theta^2$
$\frac{1}{2} [ \frac{mr^2}{2} + m(r)^2] \theta^2$
$= \frac{1}{2} [ \frac{3mr^2}{2} ] \theta^2$
keq.
PF = (PE) spring = $\frac{1}{2} k (r \theta)^2 = \frac{1}{2} \frac{kr^2 \theta^2}{keq}$
$w_n = \sqrt{ \frac{keq}{Ieq}} = \sqrt{ \frac{kr^2}{3mr^2}} = \sqrt{ \frac{2k}{3m}} r/s$
2]
$KE = (KE)_M + (KE)_disc$
$\frac{1 }{2} Mx^2 + \frac{1}{2} I \theta^2$
$= \frac{1}{2} Mx^2 + \frac{1}{2} I \frac{x^2}{r^2}$
$= \frac{1}{2} [ M + \frac{I}{r^2}] x^2$
$KE = \frac{1}{2} mew x^2$
$PE = (PE)k + (PE)2k$
$\frac{1}{2} kx^2 + \frac{1}{2} 2k (r \theta)^2$
$= \frac{1}{2} kx^2 + \frac{1}{2} 2k x^2$
$= \frac{1}{2} [\frac{[k + 2k]} {keq} x^2$
As F.O.M.
$Mx^2 + kx = 0$
So we can conclude that,
$[ m + \frac{I}{r^2}] x^2 + (3k) x = 0$