0
1.5kviews
Determine hybrid .

$π$-model parameters
- enter image description here

Mumbai University > EXTC > Sem 3 > Analog Electronics 1

Marks: 5 M

Year: Nov 2016

1 Answer
0
2views

1. Calculation of $I_B, I_C $and $V_{CE}$

  • Calculation for $I_B$

    $R_{th} =R_1||R_2$

    $R_{th} =100k||33k$

    $R_{th}=24.8kΩ$

    $E_{TH}=\frac{Vcc×R2}{R1+R2}$

    $E_{TH}=4.46V$

Fig1 Simplified circuit

Fig1 Simplified circuit

  • Applying KVL to base emitter loop,

    $-E_{TH}-I_B R_{th} -V_{BE}-I_ER_E=0$

    Put $I_E= (β+1)I_B$

    $E_{TH}-I_B R_{th} -V_{BE}-(β+1)I_B R_E=0$

    $I_B=\frac{E_{TH}-V_{BE}}{R_E (β+1)+R_{th}}$

    $I_B=\frac{4.46-0.7}{1k(200+1)+24.8k}$

    $I_B=16.65µA$

  • Calculation for $I_E$ and $I_C$

    $I_E=(β+1)I_B$

    $I_E=201×16.65µA=3.346mA$

    $I_C=βI_B=200×16.65µA=3.33mA$

  • Calculation for $V_{CE}$

    • Applying KVL to base emitter loop,

    $V_{CE}=V_{CC}I_CR_C-I_ER_E$

    $V_{CE}=18-(3.33m×2k)-(3.346m×1k)$

    $V_{CE}=7.994V≈8V$

2. Calculation of hybrid parameters

  • Transconductance

    $g_m=\frac{I _C}{V_T} =\frac{3.33mA}{26mV} =0.12S/120mS$

  • $rπ=\frac{V_T}{I _B} =\frac{26mV}{16.65µA}=1.56kΩ$

  • $ro=\frac{V_{CE}+V_A}{I_C} =\frac{8+100}{3.33m A}=32.43kΩ$

$$\boxed{gm=120mS , rπ=1.56kΩ , ro=32.43kΩ}$$

Please log in to add an answer.