written 8.4 years ago by | • modified 8.4 years ago |
$π$-model parameters
-
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 5 M
Year: Nov 2016
written 8.4 years ago by | • modified 8.4 years ago |
$π$-model parameters
-
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 5 M
Year: Nov 2016
written 8.4 years ago by | • modified 8.4 years ago |
Calculation for $I_B$
$R_{th} =R_1||R_2$
$R_{th} =100k||33k$
$R_{th}=24.8kΩ$
$E_{TH}=\frac{Vcc×R2}{R1+R2}$
$E_{TH}=4.46V$
Fig1 Simplified circuit
Applying KVL to base emitter loop,
$-E_{TH}-I_B R_{th} -V_{BE}-I_ER_E=0$
Put $I_E= (β+1)I_B$
$E_{TH}-I_B R_{th} -V_{BE}-(β+1)I_B R_E=0$
$I_B=\frac{E_{TH}-V_{BE}}{R_E (β+1)+R_{th}}$
$I_B=\frac{4.46-0.7}{1k(200+1)+24.8k}$
$I_B=16.65µA$
Calculation for $I_E$ and $I_C$
$I_E=(β+1)I_B$
$I_E=201×16.65µA=3.346mA$
$I_C=βI_B=200×16.65µA=3.33mA$
Calculation for $V_{CE}$
$V_{CE}=V_{CC}I_CR_C-I_ER_E$
$V_{CE}=18-(3.33m×2k)-(3.346m×1k)$
$V_{CE}=7.994V≈8V$
Transconductance
$g_m=\frac{I _C}{V_T} =\frac{3.33mA}{26mV} =0.12S/120mS$
$rπ=\frac{V_T}{I _B} =\frac{26mV}{16.65µA}=1.56kΩ$
$ro=\frac{V_{CE}+V_A}{I_C} =\frac{8+100}{3.33m A}=32.43kΩ$
$$\boxed{gm=120mS , rπ=1.56kΩ , ro=32.43kΩ}$$