written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: May 2014
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: May 2014
written 8.4 years ago by |
Fig1 (a) determining $R_{th}$ (b) determining $V_G$
$R_{th}=R_1||R_2$
$=140k||60k$
$=42kΩ$
Calculation for $V_G$
$V_G =\frac{V_{DD}×R_2}{R_1 +R_2}$
$={20×60k}{140k+60k}$
$=6V$
The reduced circuit as shown in Fig2
Fig2 thevenin’s equivalent circuit
$I_S=I_D+I_G$
Since $I_G≈0$
Hence $I_S≈ I_D$
Applying KVL to gate-source node we get
$V_G-V_{GS}-I_DR_S=0$
$V_{GS}=V_G- I_DR_S …………..(1)$
Now, $I_D=I_{DSS}(1-\frac{V_{GS}}{V_p} )^2 …………(2)$
Substituting eq(1) in eq(2)
$I_D=I_{DSS}(1-\frac{V_G - R_S ×I_D}{V_p})^2$
$I_D=8m (1-\frac{6- 2k×I_D}{-4})^2$
After simplification,
$2I_D=1m (10-2kI_D)^2$
$0=0.1-40I_D+4kI_D^2-2I_D$
Solving above quadratic equation
We get, $I_{D1}=3.65mA$ and $I_{D2}=6.85mA$
Put above two values in eq(1)
$I_{D2}=6.85mA$ and $V_{GS2}=-7.7V$ since $| V_{GS2}|\gt|V_p|$ FET is in pinch off region and $I_D=0$ at pinch-off region.
Hence, $I_{DQ}=I_{D1}=3.65mA$ and $V_{GSQ}=-1.3V$
Now, Applying KVL to drain-source channel
$V_{DD}-V_{DS}-I_{DQ} (R_S+R_D) =0$
$20-3.65×4.7=V_{DS}$
$V_{DSQ}=2.845V$
$$\boxed { I_{DQ}=3.65mA and V_{GSQ}=-1.3V \\ V_{DSQ} =2.845V V_G=6V }\quad$$