0
1.3kviews
The JFET shown in fig has parameters $IDSS= 8mA$ and $V_P=-4V$. Determine $V_G, I_{DQ}, V_{GSQ}$ and $V_{DSQ}$.

enter image description here

Mumbai University > EXTC > Sem 3 > Analog Electronics 1

Marks: 10 M

Year: May 2014

1 Answer
0
4views

1. Calculation for $R_{th}$ and $V_G$

Fig1 (a) determining $R_{th}$ (b) determining $V_G$

Fig1 (a) determining $R_{th}$ (b) determining $V_G$

  • $R_{th}=R_1||R_2$

    $=140k||60k$

    $=42kΩ$

  • Calculation for $V_G$

    $V_G =\frac{V_{DD}×R_2}{R_1 +R_2}$

    $={20×60k}{140k+60k}$

    $=6V$

  • The reduced circuit as shown in Fig2

Fig2 thevenin’s equivalent circuit

Fig2 thevenin’s equivalent circuit

2. Calculation for $I_{DQ}$ and $V_{GSQ}$

$I_S=I_D+I_G$

Since $I_G≈0$

Hence $I_S≈ I_D$

  • Applying KVL to gate-source node we get

    $V_G-V_{GS}-I_DR_S=0$

    $V_{GS}=V_G- I_DR_S …………..(1)$

    Now, $I_D=I_{DSS}(1-\frac{V_{GS}}{V_p} )^2 …………(2)$

  • Substituting eq(1) in eq(2)

    $I_D=I_{DSS}(1-\frac{V_G - R_S ×I_D}{V_p})^2$

    $I_D=8m (1-\frac{6- 2k×I_D}{-4})^2$

  • After simplification,

    $2I_D=1m (10-2kI_D)^2$

    $0=0.1-40I_D+4kI_D^2-2I_D$

  • Solving above quadratic equation

    We get, $I_{D1}=3.65mA$ and $I_{D2}=6.85mA$

    • Put above two values in eq(1)

      $I_{D2}=6.85mA$ and $V_{GS2}=-7.7V$ since $| V_{GS2}|\gt|V_p|$ FET is in pinch off region and $I_D=0$ at pinch-off region.

      Hence, $I_{DQ}=I_{D1}=3.65mA$ and $V_{GSQ}=-1.3V$

3. Calculation for VDSQ

  • Now, Applying KVL to drain-source channel

    $V_{DD}-V_{DS}-I_{DQ} (R_S+R_D) =0$

    $20-3.65×4.7=V_{DS}$

    $V_{DSQ}=2.845V$

$$\boxed { I_{DQ}=3.65mA and V_{GSQ}=-1.3V \\ V_{DSQ} =2.845V V_G=6V }\quad$$

Please log in to add an answer.