0
43kviews
Find ICQ and VCEQ for the circuit

shown in fig. for $β=100.$ - enter image description here

Mumbai University > EXTC > Sem 3 > Analog Electronics 1

Marks: 10 M

Year: May 2014

1 Answer
0
4.8kviews

1. Determining $V_{th}$ and $R_{th}$

Fig1 (a) determining Rth (b) determining Vth

Fig1 (a) determining $R_{th}$ (b) determining $V_{th}$

  • From the Fig1,

    $R_{th} =R_1||R_2$

    $R_{th}=35k||20k$

    $R_{th}=12.72kΩ$

    $I=\frac{2-(-5)}{R_1+R_2 }=\frac{7}{55k}=0.127mA$

    $V_{th}-(-5V) =I R_2$

    $V_{th} = (0.127m×20k)-5V$

    $V_{th}= -2.46V$

  • The reduced circuit is as shown in fig2.

Fig2 Thevenin’s equivalent circuit

Fig2 Thevenin’s equivalent circuit

2. Calculation for ICQ

  • Applying KVL to base-emitter loop,

    $-V_{th}-I_BR_{th}-V_{BE}-I_ER_E-V_{EE}=0$

    $V_{EE}- V_{BE}-V_{th} = I_BR_{th}- I_ER_E$

    Put $I_E= (β +1)I_B$

    $V_{EE}- V_{BE}-V_{th} = I_BR_{th}-(β +1)I_BR_E$

    $I_B=\frac{V_{EE}-V_{BE}-V_{th}}{R_{th}+(β +1)R_E}$

    $I_B=\frac{10-0.7-2.46}{12.72k+(100 +1)0.5}$

    $I_B=0.108mA$

    $I_{CQ}= βI_B$

    $I_{CQ}= 100×0.108mA$

    $I_{CQ}=10.8mA$

    $I_E=10.908mA$

3. Calculation for $V_{CEQ}$

  • Applying KVL to collector-emitter loop

    $10-I_CR_C-V_{CE}-I_ER_E -V_{EE}=0$

    $10+10-(10.8m×0.8k)-(10.908m×0.5k)=V_{CEQ}$

    $V_{CEQ}=14.094V$

$$\boxed {I_{CQ}=10.8mA , V_{CEQ}=14.094V}$$

Please log in to add an answer.