written 8.4 years ago by | • modified 8.4 years ago |
shown in fig. for $β=100.$ -
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: May 2014
written 8.4 years ago by | • modified 8.4 years ago |
shown in fig. for $β=100.$ -
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: May 2014
written 8.4 years ago by | • modified 8.4 years ago |
1. Determining $V_{th}$ and $R_{th}$
Fig1 (a) determining $R_{th}$ (b) determining $V_{th}$
From the Fig1,
$R_{th} =R_1||R_2$
$R_{th}=35k||20k$
$R_{th}=12.72kΩ$
$I=\frac{2-(-5)}{R_1+R_2 }=\frac{7}{55k}=0.127mA$
$V_{th}-(-5V) =I R_2$
$V_{th} = (0.127m×20k)-5V$
$V_{th}= -2.46V$
The reduced circuit is as shown in fig2.
Fig2 Thevenin’s equivalent circuit
2. Calculation for ICQ
Applying KVL to base-emitter loop,
$-V_{th}-I_BR_{th}-V_{BE}-I_ER_E-V_{EE}=0$
$V_{EE}- V_{BE}-V_{th} = I_BR_{th}- I_ER_E$
Put $I_E= (β +1)I_B$
$V_{EE}- V_{BE}-V_{th} = I_BR_{th}-(β +1)I_BR_E$
$I_B=\frac{V_{EE}-V_{BE}-V_{th}}{R_{th}+(β +1)R_E}$
$I_B=\frac{10-0.7-2.46}{12.72k+(100 +1)0.5}$
$I_B=0.108mA$
$I_{CQ}= βI_B$
$I_{CQ}= 100×0.108mA$
$I_{CQ}=10.8mA$
$I_E=10.908mA$
3. Calculation for $V_{CEQ}$
Applying KVL to collector-emitter loop
$10-I_CR_C-V_{CE}-I_ER_E -V_{EE}=0$
$10+10-(10.8m×0.8k)-(10.908m×0.5k)=V_{CEQ}$
$V_{CEQ}=14.094V$
$$\boxed {I_{CQ}=10.8mA , V_{CEQ}=14.094V}$$