written 5.6 years ago by |
The discharge of water through a rectangular channel of width 8m, is $m^3/3$, when depth of flow of water is 1.2m calculate
1] specific energy of the flowing water.
2] critical depth and critical velocity.
3] value of minimum specific energy.
Given:
Discharge, Q = $15m^3/s$
width b = 8m
depth, h = 1.2m
$\therefore$ discharge per unit width,
$q = \frac{Q}{b}$
$= \frac{15}{8}$
$= 1.875 m^2/s$
Velocity of flow, $v = \frac{q}{Area}$
$= \frac{15}{b \times h}$
$\frac{15}{0 \times 1.2} = 1.5625$
$\therefore$ V = 1.5625 m/s
1] Specific energy (E)
$E = h + \frac{v^2}{2g}$
$= 1.2 + \frac{1.5625^2}{8 \times 9.81}$
= 1.2 + 0.124
[ E = 1.324m]
2] Critical path (hc)
$hc = (\frac{q^2}{g})^1/3$
$= (\frac{1.875^2}{9.81})^1/3$
= 0.71 m
Critical velocity (vc)
$Vc = \sqrt{9 \times hc}$
$\sqrt{9.81 \times 0.71}$
[Vc = 2.639 m/s]
3] Minimum specific energy (E min)
$E_{min} = \frac{3hc}{2}$
= $\frac{3 \times 0.71}{2}$
[ $E_{min}$ = 1.065m]