written 5.6 years ago by |
Find the bed slope of trapezoidal channel of bed width 4m, depth of water 3m and side slope of 2 horizontal to 3 vertical, when the discharge through the channel is 20 $m^3/s$
Taking manning's N = 0.03, in manning's formula $c = \frac{1}{N} m^{1/6}$
Given:
Bed width , b = 4cm
Depth of flow , d = 3m
Side slope = 2 hor to 3 verd
Discharge Q = 20.0 20 $m^3/s$
Manning's N = 0.03
Distance , $BE = d \times \frac{2}{3}$ = 2m
$\therefore$ Top width , Q = AB + 2B
= 4 + 2 x 2
= 8.0 m
$\therefore$ Area of flow,
$A = \frac{(AB + CD)}{2} \times d$
$ = \frac{4 + 8}{2} \times 3$
$[ A = 18m^2 ]$
wetted perimeter,
P = AD + AB + BC
= AB + 2BC
$= 4 + 2 \sqrt{BE^2 + EC^2}$
$= 4 + 2 \sqrt{2^2 + 3^2}$
$= 4 + 2 \sqrt{13}$
[ P = 11.21 m ]
$\therefore$ Hydraulic mean depth,
$m = \frac{A}{P}$
$= \frac{18}{11.21}$
[ m = 1.6057]
using mannings formula,
$c = \frac{1}{N} m^1/6$
$\frac{1}{0.03} \times (1.6057)^1/6$
[ c = 36.07]
Now, Q = $AC \sqrt{mi}$
$20 = 18 \times 36.07 \times \sqrt{1.6057 \times i}$
$20 = 822.71 \sqrt i $
$\therefore$ $i = (\frac{20}{822.71})^2$
= 0.0005909
$i = \frac{1}{1692}$