written 5.5 years ago by | • modified 5.2 years ago |
$I_{cq} = \frac{1}{2}$ $I_{csat}$
$I_{csat} = 8mA$
Vc = 18 v and B = 110
Determine $R_c, R_t$ and $R_B$
Solution: Drawing DC load line for above ckt
written 5.5 years ago by | • modified 5.2 years ago |
$I_{cq} = \frac{1}{2}$ $I_{csat}$
$I_{csat} = 8mA$
Vc = 18 v and B = 110
Determine $R_c, R_t$ and $R_B$
Solution: Drawing DC load line for above ckt
written 5.5 years ago by | • modified 5.2 years ago |
$\because$ $I_c = \frac{1}{2} Icsat$
$= \frac{1}{2} \times (8MA) = 4 \ mA $
$I_{cq} = 4 \ MA$
$V_{cc} = 28$
$\therefore$ $I_c = \frac{v_{cc} - V_c}{R_c}$
$4 \ mA = \frac{28-18}{R_c}$
$\therefore$ $R_c = \frac{10}{4 \ mA} = 2.5 K$
$R_c = 2.5 K$
Selecting $V_{CEQ} = \frac{1}{2} V_{cc} = \frac{1}{2} (28)$
$V_{CEQ} = 14 \ V$
From collector loop
$28 - I_c \ R_c \ - VCE - I_E \ R_E \ - 0$
$28 - 4 \ mA \times 2.5 k - 14 = I_E \ R_E $
$4 = 4.036 \ mA \times \ R_E$
$ R_E = 990.99$
From base loop
$28 - I_B R_B - VBE - 1_E R_E = 0$
$\therefore$ $R_B = \frac{28 - 0.7 - 4.036 MA \times 990.99}{36.36 \mu A} = 640.82$
$R_B = 640.82$