written 2.6 years ago by | • modified 2.6 years ago |
$\therefore$ $H = \left [\begin{array} 11 0 0 \\ 0 1 1 \\ 1 1 1 \\ 1 0 0 \\ 0 1 0 \\ 0 0 1 \end{array} \right] $
be a parity check, matrix, Determine the group code $e_H : B^3 \rightarrow B^6$
Solution: Let,
Here, n = 6, r = 3 $\rightarrow$ m = n - r = 3
$\therefore$ Encoding function $e : B^3 \rightarrow B^6$
e(000) = 000 $x_1 x_2 x_3$
e(001) = 001 $x_1 x_2 x_3$
e(010) = 010 $x_1 x_2 x_3$
e(011) = 011 $x_1 x_2 x_3$
e(100) = 100 $x_1 x_2 x_3$
e(101) = 101 $x_1 x_2 x_3$
e(110) = 110 $x_1 x_2 x_3$
e(111) = 111 $x_1 x_2 x_3$
1] e(000) = [000] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 000
$\therefore$ e = (000) = 000 000
2] e(001) = [001] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 111
e (001) = 001111
3] e (010) = [010] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 011
e(010) = 010011
4] e(011) = [011] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 100
e(011) = 011100
5] e(100) = [100] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 011
e(100) = 100100
6] e(101) = [101] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 011
e(101) = 101011
7] e(110) = [110] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 111
e(110) = 110111
8] e(111) = [111] $\begin{matrix} \Bigg [1 0 0\\ 0 1 1\\ 1 1 1\Bigg] \end{matrix}$
= 000
e(111) = 111000
$\therefore$ Group code $e_n : B^3 \rightarrow B^5$ is
e(000) = 000000
e(001) = 001111
e(010) = 010011
e(011) = 011100
e(100) = 100100
e(101) = 101011
e(110) = 110111
e(111) = 111000