written 2.6 years ago by |
ANS:
$f : z \rightarrow z, f(x) = x^2 + x + 1$
Solution:
Let function f : z $\rightarrow$ z defined as
$f(x) = x^2 + x + 1$
1] Injective or one to one.
A function f : z $\rightarrow$ z is said to be an injective or one to one function if
$f(x_1) = f(x_2) \rightarrow x_1 = x_2$ OR
$f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2$
say, $f(x_1) = f(x_2)$
$x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1 $
$\therefore$ $x_1^2 + x_1 \neq x_2^2 + x_2$
Any function of 2nd def is never injective or one to one.
$\therefore$ f : z $\rightarrow$ z, $f(x) = x^2 + x + 1$
is not injective function.
2] Subjective or onto function.
A function $ f : z \rightarrow z$ is said to be a subjective function if
co-domain (+) = Range (+)
OR V y E Z a pre image X W Z.
In the given function $f(x) = x^2 + x +1 $ it can be seen that negative elements of Z are not image of any element.
$\therefore$ The given function is not subjective or onto function.