written 2.6 years ago by |
Let A = {1,2,3,4,5} Let R = {(1,1), (1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5)} and
S = {(1,1)(2,2),(3,3),(4,4),(4,5),(5,4)(5,5)} be the relation on A. Find the smallest equivalence relation containing the relation R and C.
Solution: Let A = {1,2,3,4,5}
R = {(1,1)(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4),(5,5)}
S = {(1,1)(2,2),(3,3),(4,4),(4,5),(5,4)(5,5)}
$\therefore$ $M_R = \begin{matrix} \Bigg [1 1 0 0 0 \\ 1 1 0 0 0 \\ 0 0 1 1 0 \\ 0 0 1 1 0 \\ 0 0 0 0 1 \Bigg] \end{matrix}$
$M_s = \begin{matrix} [1 0 0 0 0 \\ 0 1 0 0 0 \\ 0 0 1 0 0 \\ 0 0 0 1 1 \\ 0 0 0 1 1 ] \end{matrix}$
Step 1: Cal wo = MRus = MR.V.ms
$\therefore$ $w_o = M_{Rus} $ = MR \ VMs = $\begin{matrix} [ 1 1 0 0 0 \\ 1 1 0 0 0 \\ 0 0 1 1 0 \\ 0 0 1 1 1 \\ 0 0 0 1 1 ] \end{matrix}$
Using wars-halls find till $w_5$
Step 2: Cal $w_1$
$C_1$ - No. of 1's at c$w_1$ = 1,2
$R_1$ - No. of 1's at yow n = 1,2
$G \times R_1 $ = { (1,1), (1,2), (2,1), (2,2) }
$\therefore$ $w_2 = w_0$
Step 3: Cal $w_2$
$c_2$ = 1,2 $c_2 \times R_2$ = { (1,1), (1,2), (2,1), (2,2)}
$R_2$ = 1,2
$\therefore$ $w_2 = w_1$
Step 4: Cal $w_3$
$c_3$ = 3,4 $c_3 \ \times \ R_3 $ = { (3,3), (3,4), (4,5), (4,4)}
$R_3$ = 3,4
$\therefore$ $w_3 = w_2$
Step 5 : Cal $w_4$
$c_4$ = 3,4,5 $c_4 \ \times \ R_4$ = {(3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4), (5,5)}
$\therefore$ $w_4 = \begin{matrix} [ 1 1 0 0 0 \\ 1 1 0 0 0 \\ 0 0 1 1 1 \\ 0 0 1 1 1 \\ 0 0 1 1 1 ] \end{matrix}$
Step 6: Cal $w_5$
$c_5$ = 3,4,5 $\therefore$ $c_5 \times R_5 = c_4 \times R_4$
$R_5$ = 3,4,5
$\therefore$ $w_5 = w_4 = \begin{matrix} [ 1 1 0 0 0 \\ 1 1 0 0 0 \\ 0 0 1 1 1 \\ 0 0 1 1 1 \\ 0 0 1 1 1 ] \end{matrix}$
$\therefore$ Smallest equivalence relation containing R F S both is $( R U S)^\infty$
$\therefore$ $(RUS)^\infty$ = { (1,1) (1,2),(2,1),(2,2),(3,3),(3,4), (3,5) ,(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)}