written 2.9 years ago by |
Show that the (2,5) encoding function $e : B^2 \rightarrow B^5$ defined by
e(00) = 00000
e(01) = 01110
e(10) = 10101
e(11) = 11011
is a group code.
How many errors will it detect and correct?
Solution: Encoding function $e : B^2 \rightarrow B^5$defined as
e(00) = 00000 = $x_0$
e(01) = 01110 = $x_1$
e(10) = 10101 = $x_2$
e(11) = 11011 = $x_3$
$\therefore$ Range of encoding function is,
Range (e) = { $x_0 = 00000$, $x_1 = 01110$, $x_2 = 11011 $ , $x_3 =11011 $ }
Encoding function e : $B^2 \rightarrow B^5$ is said to be a group code if range of e is subgroup of $B^2$
$\therefore$ Prepare composition table for $(B_n, (+))$
$\because$ All the entries of composition table is closed.
$\therefore$ Encoding function $e : B^2 \rightarrow B^5$ is a group code.
$\because$ $e : B^2 \rightarrow B^5$ is a group codes
$\therefore$ mm distance of encoding function e is the min of weight of non-zero code words.
$\therefore$ |X_1 | = 3
| X_2 | = 3
| X_3 | = 4
$\therefore$ Minimum distance = 3
Error detection:
Encoding function $e : B^2 \rightarrow B^5$ can detect K or fewer errors if
min distance = k + 1
3 = k + 1
$\therefore$ k = 2
$\therefore$ Encoding function can detect 2 or fewer errors.
Error correction:
Encoding function $e : B^2 \rightarrow B^5$ can correct K or fewer errors if min distance = 2k + 1
3 = 2k + 1
$\therefore$ k = 1.
$\therefore$ Encoding function can correct 1 or fewer errors.