written 5.7 years ago by | modified 3.1 years ago by |
Prove that G = { 1,2,3,4,5,6} is a finite abelian group of order 6 multiplication module 7.
Solution: Algebraic system $\rightarrow$ $(G_1 \times 7)$
1] Closure Axiam:
V $a_1$ b E G If $AX_7$ b E G then $(G_1 \times \ 7)$ is closed.
prepare composition table for ( $G_1 \times \ 7)$
$X_7$ | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 |
2 | 2 | 4 | 6 | 1 | 3 | 5 |
3 | 3 | 6 | 2 | 5 | 1 | 4 |
4 | 4 | 1 | 5 | 2 | 6 | 3 |
5 | 5 | 3 | 1 | 6 | 4 | 2 |
6 | 6 | 5 | 4 | 3 | 2 | 1 |
From above composition table $(G_1 \times 7)$ is closed.
2] Associative prop:
V a,b,c E G if $a \times 7(b X_7 \ c) = (a X_7 \ b) X_7 \ C$
then $(G_1 X_7)$ is associative.
Let a = 2, b = 3, c = 5
$2X_7 (3 X_7 \ 5) = (2 X_7 \ 3) X_7 \ 5$
$2 X_7^1 = 6 \times 5$
2 = 2
$\therefore$ $(G_1 X_7)$ is associative.
3] Identity element property:
V a E G 7 an ele e E G such that
$a X_7^e = a = e x_7 \ a$
$\therefore$ e = 1 E G
$\therefore$ Identity element e=1 exist in $(G_1 X_7)$
4] Inverse element property:
V a E G 7 an ele $\alpha$ E G such that
$a x_7 \alpha = e = \alpha x_7 \ a$
$\therefore$ $1^{-1} = 1$ $4^{-1} = 2$
$2^{-1} = 4$ $5^{-1} = 3$
$3^{-1} = 5$ $6^{-1} = 6$
$\therefore$ Inverse element exist in $(G_1 X_7)$
$\therefore$ $(G_1 X_7)$ is a group.
5] Commutative property:
$V \ a_1$ b E G if a $x_7$ b = b $x_7$ a then
$(G_1 X_7)$ is commutative.
say a = 3 , b = 4
AX7b = bX7a
3$x_7^4=4 x_7 ^3$
5 = 5
$\therefore$ $(G_1 X_7)$ is commutative.
$\therefore$ $(G_1 X_7)$ is an abelian group