written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 5 M
Year: Nov 2013
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 5 M
Year: Nov 2013
written 8.4 years ago by | • modified 8.4 years ago |
Fig1 DC equivalent circuit
$V_D=V_{DD}-I_DR_D$
$Thus V_G= V_{DD}-I_DR_D ……………………(1)$
$I_D=I_{DSS}(1-\frac{V_{GS}} {V_p})^2$
$I_D=I_{DSS}(1-\frac{V_G}{V_p})^2$
$I_D=I_{DSS}(1-\frac{-I_D×R_D+V_{DD }}{V_p})^2$
$I_D=8(1-\frac{20-4k×I_D}{-4})^2$
$I_D= \frac{1}{2} m(4+20-4kI_D)2$
$2I_D= 1m(24-4kI_D)2$
$2I_D=1m(576-192k+16MI_D^2)$
$2I_D= 0.576-192I_D+16kI_D^2$
Solving above equation,
We get $I_{D1}=5.19 mA$ and $I_{D2}=6.93mA$
For $I_{D2}=6.93mA; V_{GS}=-7.72V$
$|V_{GS}|\gt|V_P|$ hence device is in pinch-off region and in this region $I_D=0$
Hence $I_{DQ}=I_{D1}=5.19mA$
Substituting value of $I_{DQ}$ in eq.(1)
$V_G= V_{DD}I_DR_D$
$V_G= 20-(5.19m×4k)$
$V_{GSQ}= -0.76V$
Since $V_G$ and $V_D$ are same.
$V_{DSQ}= V_{GSQ}= -0.76V$
$$\boxed{V_{DSQ}= V_{GSQ}= -0.76V , I_{DQ}= 5.19mA}$$