written 8.4 years ago by | • modified 8.4 years ago |
shown in Fig. $β=90$ -
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: Nov 2013
written 8.4 years ago by | • modified 8.4 years ago |
shown in Fig. $β=90$ -
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 10 M
Year: Nov 2013
written 8.4 years ago by | • modified 8.4 years ago |
Fig1 DC equivalent circuit
Applying KVL to emitter-base loop
$-200I_B-V_{BE} -2kI_E + V_{EE}=0 ………………………(1)$
$I_E=I_C+I_B$
$I_E= βI_B+I_B$
$I_E= (β+1) I_B$
Put value of $I_E$ in equation (1)
$-R_BI_B-V_{BE}-R_E(β+1)I_B + V_{EE}=0$
$I_B=\frac{V _{EE}-{V_{BE}}}{RE(β+1)+RB}$
$I_B=\frac{V _{EE}-{V_{BE}}}{2k(β+1)+200k}$
$I_B=\frac{20-0.7}{2k×91+200k}$
$I_B=\frac{19.3}{382k}$
$I_B=50.52µA$
$I_C=βI_B$
$I_C=90×50.52µ$
$I_C= 4.547mA$
$I_E= (β+1) I_B$
$I_E=91×50.52µ$
$I_E=4.597mA$
$V_E=V_{EE}-I_ER_E$
$V_E=20-(4.597×2k)$
$V_E=9.194V$
$V_{BE}=V_B-V_E$
$0.7V=V_B-9.194V$
$V_B=9.894V$
From diagram we conclude that, $V_C=0V$
$V_{CE}=V_C-V_E$
$V_{CE}=-9.194V$
4. Calculation of $S_{ICO}$
$I_B=\frac{V_{EE}-{V_{BE}}} {RE(β+1)+RB}$
Now differentiating w.r.t. $I_C$
$\frac{∆I_B}{∆I_C } =0$; since all term are constant no term depends upon $I_C$
$S_{ICO}=\frac{1+β}{1-β(\frac{∆I_B}{∆I_C })}$
$S_{ICO}=1+β=91$
$$\boxed{ I_B=50.52µA , I_C= 4.547mA , V_E=9.194V \\ V_C=0V , V_{CE}=-9.194V , V_B=9.894V \\ S_{ICO} =91 }\qquad$$