written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 8 M
Year: Nov 2013
written 8.4 years ago by | • modified 8.4 years ago |
Mumbai University > EXTC > Sem 3 > Analog Electronics 1
Marks: 8 M
Year: Nov 2013
written 8.4 years ago by |
Fig1 (a) determining $R_{th}$ (b) determining $V_G$
Calculation for $R_{th}$
$R_{th}=R_1||R_2$
$=910k||110k$
$=98.13kΩ$
Calculation for $V_G$
$V_G =\frac{V _{DD} ×R_2}{R _1+R _2}$
$=\frac{20×110k}{ 910k+110k}$
$=2.16V$
Simplified circuit
Fig2 thevenin’s equivalent circuit
Applying KVL to gate-source loop
$I_GR_{th}+V_G-V_{GS}-I_DR_S=0$
Put $I_G=0$
$V_{GS}=V_G- I_DR_S ……………(1)$
Put $I_D$=0 in eq(1), then $V_{GS}=V_G=2.16V$
Put $V_{GS}=0$ in eq(1), then $I_D=\frac{V_{GS}}{R_S} =\frac{2.16}{0.51k}=4.235mA$
$I_D=I_{DSS}(1-\frac{V _{GS}}{V_p})^2$
$I_D=10m (1+\frac{V _{GS}}{3.5})^2$
$I_{DQ}=5.6mA, V_{GSQ}=-0.7V$
Applying KVL to drain-source loop
$V_{DD} -V_{DS}-I_D (R_S+R_D) =0 ……………(2)$
Put $I_D=0$ in eq(2), then $V_{DS}=V_{DD}=20V$
Put $V_{DS} =0$ in eq(2), then $I_D=\frac{V_{DS}}{R_S+R_D}=\frac{20}{0.51k+2.2k}=7.38mA$
$V_{DSQ}=4.4V$