written 5.6 years ago by |
in water, if the atmospheric pressure head is 10.3m of water and loss of head due to friction in the draft tube is equal to 0.2 x velocity head at outlet of the tube.
Find.
1] Pressure head at inlet.
2] Efficiency of the draft tube.
Given:
Diameter at inlet, $D_1$ = 1.0m
Diameter at outlet, $D_2$ = 1.5m
Velocity at outlet, $V_2$ = 2.5 m/s
Total length of tube, $H_s$ + y = 6.0m
Length of tube in water, y = 1.20 m
Hs = 6.0 - 1.20
= 4.80 m
Atmospheric pressure head, $\frac{P_a}{P_g} = 10.3m$
Loss of head due to friction,
$hf = 0.2 \times \ velocity head at outlet$
$=0.2 \times \frac{v_2^2}{2g}$
Discharge through tube,
Q = $A_2 V_2$
$= \frac{\pi }{4} \times (D_2)^2 \times 2.5$
$= \frac{\pi }{4} \times (1.5)^2 \times 2.5$
$= 4.4178 \ m^2/s$
Velocity at inlet,
$V_1 = \frac{Q}{A_1}$
= $\frac{4.4178}{\frac{\pi }{4} \times (1)^2}$
= 5.625 m/s
Step No (1) Pressure head at inlet $(\frac{P_1}{P_g})$
$\frac{P_1}{P_g} = \frac{P_1}{P_g} - Hs - (\frac{v_1^2}{2g} - \frac{v_2^2}{2g} - Hf)$
$= 10.3 - 4.8 - (\frac{5.625^2}{2 \times 9.81} - \frac{2.5^2}{2 \times 9.81} - 0.2 \times \frac{v_2^2}{2g})$
$= 10.3 - 4.8 - ( 1.6126 - 0.3185 - \frac{0.2 \times 2.5^2}{2 \times 9.81})$
= 10.3 - 4.8 - (1.6126 - 0.3185 - 0.0637)
= 5.5 - (1.2304)
= 4.269
= 4.27 (abs)
Step No (2) Efficiency of draft tube (nd)
$n_d = \frac{(\frac{v_1^2}{2g} - \frac{v_2^2}{2g}) - hf}{\frac{v_1^2}{2g}}$
$= \frac{ \frac{v_1^2}{2g} - \frac{v_2^2}{2g} - \frac{0.2v_2^2}{2g}} {\frac{v_1^2}{2g}}$
$= \frac{v_1^2 - 1.2v_2^2}{v_1^2}$
$= 1 - 1.2 (\frac{v^2}{v^1})^2$
$= 1-1.2 (\frac{2.2}{5.625})^2$
= 1- 0.237
[ $n_d$ = 0.763 or 76.3%]