Data:-
$u=1.5 poise=0.15 N-s/m^2$
$S_{oil}=0.9,L=20m$
$D=3cm=3\times 10^{-2}m$
$P_A=200kPa=200\times 10^3N/m^2$
$P_B=500kPa=500\times 10^3N/m^2$
To find:-
(a) Direction of flow=?
(b)Rate of flow=?
Solution:-
(a)Direction of flow:
Total energy at point A
$T.E_A=\frac{P_A}{S_{oil}.9}+Z_A$
Here $Z_A=20m$
$S_{oil}=S_{oil}\times S_{water}$
$=0.9\times 1000=900\frac{kg}{m^3}$
$\therefore T.E_A=\frac{200\times 10^3}{900\times 9.81}+20$
$=42.652m$................(1)
Total energy at point B
$T.E_B=\frac{P_B}{S_{oil}.9}+Z_B$
Here $Z_B=0......(Datum)$
$\therefore T.E_B=\frac{500\times 10^3}{900\times 9.81}+0$
$=56.63 m$..............(2)
From (1) and (2)
$T.E_B\gt T.E_A$
$\therefore \text{water flows from 'B' to 'A'}$
(b) Rate of flow
$h_F=\frac{32.u.v.L}{S_{oil}.9.D^2}$............loss of head
Also $h_F=T.E_B-T.E_A$............piczometric head
$=56.63-42.652$
$=13.979m$
$\therefore$ Above equation becomes
$13.979=\frac{32\times 0.15\times v\times 20}{900\times 9.81\times 0.03^2}$
$v=1.157 m/s$
Now, using continuity equation
$Q=A.v$
$=\frac{\pi}{4}\times 0.03^2\times 1.157$
$=8.1783\times 10^{-4} m^3/sec$