written 5.6 years ago by | • modified 4.5 years ago |
Calculate pressure, velocity and temperature just downstream of the shock wave. [Take ratio of specific heat k=1.4 and gas constant R=287 J/(kg.k)].
written 5.6 years ago by | • modified 4.5 years ago |
Calculate pressure, velocity and temperature just downstream of the shock wave. [Take ratio of specific heat k=1.4 and gas constant R=287 J/(kg.k)].
written 5.6 years ago by |
Data:-
Upstream conditions:
$v_1=660m/s, P_1=110kPa=100\times 10^3 N/m^2$
$k=1.4, T_1=-20^\circ C=-20+273=253 K, R=287 J/kgK$
To find:-
$P_2=?,V_2=?,T_2=?$
Solution:-
Sonic speed at upstream
$c_1=\sqrt{K.R.T_1}=\sqrt{1.9\times 287\times 253}=318.83 m/s$
Upstream mach number
$M_1=\frac{v_1}{c_1}=\frac{660}{318.83}=2.07$
Velocity at downstream, $v_2$
$\frac{v_2}{v_1}=\frac{(K-1)M_1^2+2}{(K+1)M_1^2}$
$\frac{v_2}{660}=\frac{(1.4-1)2.07^2+2}{(1.4+1)2.07^2}$
$\therefore v_2=238.4 m/s$
Pressure at downstream, $P_2$
$\frac{P_2}{P_1}=\frac{2KM_1^2-(K-1)}{K+1}$
$\frac{P_2}{100\times 10^3}=\frac{2\times 1.4\times 2.07^2-(1.4-1)}{1.4+1}$
$P_2=483.238\times 10^3 N/m^2$
Temperature at downstream, $T_2$
$\frac{T_2}{T_1}=\frac{[(K-1)M_1^2+2][2KM_1^2-(K-1)]}{(K+1)^2M_1^2}$
$\frac{T_2}{253}=\frac{[(1.4-1)2.07^2+2][2\times 1.4\times 2.07^2-(1.4-1)]}{(1.4+1)^2\times 2.07^2}$
$T_2=441.53 K$