written 5.6 years ago by | • modified 4.5 years ago |
Determine,
(a) Boundary layer thickness
(b) Local coefficient of drug
(c) Check whether the flow is attached or not.
written 5.6 years ago by | • modified 4.5 years ago |
Determine,
(a) Boundary layer thickness
(b) Local coefficient of drug
(c) Check whether the flow is attached or not.
written 5.6 years ago by |
Data:-
$f(\eta)=\frac{3n}{2}-\frac{n^3}{2}$; $\eta =\frac{y}{\rho}$ & $f(\eta)=\frac{u}{U}$
To find:-
(a) $\rho =?$
(b) $C_D*=?$
(c) To check whether the flow is attached or not=?
Solution:-
(a) From given data,
$\frac{u}{U}=(\frac{3}{2}\frac{y}{\rho})-\frac{1}{2}(\frac{y}{\rho})^3$
$\frac{u}{U}=\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}$..................(1)
Momentum Thickness $\theta$
$\theta=\int _0^{\rho}\frac{u}{U}[1-\frac{u}{U}]dy$
$=\int _0^{\rho}\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}[1-(\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3})]dy$
$=\int _0^{\rho}\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}[1-\frac{3y}{2\rho}+\frac{y^3}{2\rho ^3}]dy$
$=\int _0^{\rho}[\frac{3y}{2\rho}-\frac{9y^2}{4\rho ^2}+\frac{3y^4}{4\rho ^4}-\frac{1}{2}\frac{y^3}{\rho ^3}+\frac{3y^4}{4\rho ^4}-\frac{1}{4}\frac{y^6}{\rho ^6}]dy$
$\theta=[\frac{3y^2}{4\rho}-\frac{9y^3}{12\rho ^2}+\frac{3y^5}{20\rho ^4}-\frac{y^4}{8\rho ^3}+\frac{3y^5}{20\rho ^4}-\frac{y^7}{28\rho ^6}]_0^{\rho}$
$\theta=[\frac{3}{4}\rho -\frac{3}{4}\rho +\frac{3}{20}\rho -\frac{1}{8}\rho +\frac{3}{20}\rho -\frac{1}{28}\rho]$
$\theta=\frac{39}{280}\rho$
Now, by Von Karman equation,
$\frac{T_0}{\rho \cdot U^2}=\frac{d\theta}{dx}$................(2)
Putting value of $'\theta'$ in equation (2)
$\frac{T_0}{\rho \cdot U^2}=\frac{d}{dx}(\frac{39}{280}\rho)$
$T_0=\frac{39}{280}\rho \cdot U^2\frac{\partial \rho}{\partial x}$.............(3)
From Newtons law of viscosity
$T_0=u(\frac{\partial u}{\partial y})_{\text{at y=0}}$
From equation (1)
$u=[\frac{3y}{2\rho}-\frac{y^3}{2\rho ^3}]U$
Differentiating above equation w.r.t. y
$\frac{\partial u}{\partial y}=U[\frac{3y}{2\rho}-\frac{3y^2}{3\rho ^3}]$
$(\frac{\partial u}{\partial y})_{\text{at y=0}}=\frac{3U}{2\rho}$...............(5)
Putting above values in equation (4)
$T_0=\frac{3uU}{2\rho}$..............(6)
equating equations (3) & (6)
$\frac{39}{280}\rho \cdot U^2\frac{\partial \rho}{\partial x}=\frac{3uU}{2\rho}$
$\rho \cdot d\rho=\frac{3}{2}u\times \frac{280}{39}\times \frac{dx}{\rho U}$
$\rho \cdot d\rho=\frac{420}{39}\frac{u}{\rho U}dx$
Integrating
$\frac{\rho ^2}{2}=\frac{420}{39}\frac{u}{\rho U}x+C$
at $x=0,\rho=0,C=0$
$\frac{\rho ^2}{2}=\frac{420}{39}\frac{ux}{\rho U}$
$\therefore \rho=\sqrt{\frac{420\times 2}{39}\times \frac{u}{\rho . U}.x}$
$=4.64\sqrt{\frac{u.x}{\rho . U}}$
$=4.64\sqrt{\frac{u.x}{\rho . U}}\frac{x}{x}=4.64\sqrt{\frac{x^2}{\frac{\rho U x}{x}}}$
$\rho=\frac{4.64x}{\sqrt{Rex}}$
(b) $T_0=\frac{3uU}{2\rho}$...............from equation (6)
$T_0=\frac{3uU}{2\times \frac{4.64x}{\sqrt{Rex}}}$
$=0.323\frac{u.U}{x}.\sqrt{Rex}$
local coefficient of drag, $C_D*$
$C_D*=\frac{T_0}{\frac{\rho U^2}{2}}=\frac{0.323\frac{u.U}{x}.\sqrt{Rex}}{\frac{\rho U^2}{2}}$
$=\frac{0.646u.\sqrt{Rex}}{\rho Ux}$
$=\frac{0.646u.\sqrt{Rex}}{\frac{\rho Ux}{u}}$
$C_D*=\frac{0.646}{\sqrt{Rex}}$
(c)$(\frac{\partial u}{\partial y})_{\text{at y=0}}=\frac{3U}{2\rho}$.............positive
Hence flow is attached.