Data:-
$L_1=300 m$
$L_2=170 m$
$L_3=200 m$
$D_1=300 mm=0.3m$
$D_2=200 mm=0.2m$
$D_3=400 mm=0.4m$
$f_1=0.05,f_2=0.0052,f_3=0.0048$
$H=12m$
To find:- Q=?
Solution:-
Pipes are in series
$Q=A_1V_1=A_2V_2=A_3V_3$
$V_1=\frac{4Q}{\pi D_1^2},V_2=\frac{4Q}{\pi D_2^2},V_3=\frac{4Q}{\pi D_3^2}$
$H=\frac{4f_1L_1V_1^2}{2gD_1}+4\frac{4f_2L_2V_2^2}{2gD_2}+\frac{4f_3L_3V_3^2}{2gD_3}$
$=\frac{4f_1L_1}{2gD_1}(\frac{4Q}{\pi D_1^2})^2+4\frac{4f_2L_2}{2gD_2}(\frac{4Q}{\pi D_2^2})^2+\frac{4f_3L_3}{2gD_3}(\frac{4Q}{\pi D_3^2})^2$
$l^2=\frac{4\times 0.005\times 300}{2\times 9.81\times 0.3}\times(\frac{4Q}{\pi\times 0.3^2})^2+\frac{4\times 0.0052\times 140}{2\times 9.81\times 0.2}\times(\frac{4Q}{\pi\times 0.2^2})^2+\frac{4\times 0.0048\times 200}{2\times 9.81\times 0.4}\times(\frac{4Q}{\pi\times 0.4^2})^2$
$\therefore l^2=204.016Q^2+913.02Q^2+30.98Q^2$
$\therefore Q=0.1022m^3/s$