Data:-
$D=0.6m,H=150m$
$L=5000m$
Rate of water drawing$=0.1 \frac{m^3}{s}$ per 300 m
$q*=\frac{0.1}{300}=3.33\times 10^{-4}\frac{m^3/s}{m}$
$f=0.04,L_0=1200m, \text{vel. at dead end=0}$
To find:-
$h_f$ in last 1200 m of pipe=?
Solution:
Total distance $Q_0=\frac{1200}{300}\times 0.1=0.4m^3/sec$
-As the water is drawn at uniform rate, therefore deriving expression for head loss for pipe having uniform water drawing rate.
-Consider a section at distance 'x' from the start of uniform withdrawal at q* per meter length
$\therefore$ Discharge from x length
$Q_x=Q_0-(q*.x)$
in a small distance 'dx; head loss is $dh_f$
$\therefore dh_f=\frac{f.dx.v_x^2}{2gD}$
but $v_x=\frac{Q_x}{A}$
$\therefore v_x=\frac{\Delta Q_x}{\pi D^2}$
$\therefore v_x^2=[\frac{4(Q_0-q*.x)}{\pi D^2}]^2$
$\therefore dh_f=\frac{f}{2gD}\times \frac{16(Q_0-q*x)^2}{\pi ^2D^2}.dx$
$dh_f=\frac{8f}{\pi ^2gD^5}\times (Q_0-q*x)^2dx$
Integrating
$h_f=\int _0^{L_0}\frac{8f}{\pi ^2gD^5}(Q_0-q*x)^2dx$
$=\frac{-8f}{\pi ^2.g.D^5}\times \frac{1}{3q*}[(Q_0-q*L_0)^3-Q_0^3]$
$\therefore h_f=\frac{8f}{3\pi ^2.g.D^5}\times \frac{1}{q*}[(Q_0^3-(Q_0-q*L_0)^3]$.........(1)
Equation (1) is expression for pipe in which water is drawn at uniform rate
Now, for last 1200 m, $D=0.6 m,q*=3.33\times 10^{-4}\frac{m^3/s}{m},Q_0=0.4m^3/s,L_0=1200 m $ & $f=0.04$
$\therefore$ equation (1) becomes
$h_f=\frac{8\times 0.04}{3\pi ^2\times 9.81\times 0.6^5}\times \frac{1}{3.33\times 10^{-4}}[0.4^3-(3.33\times 10^{-4}\times 1200)^3]=2.7m$