Data:-
Here, fluid is in laminar motion between two parallel plates separated by distance 'b' and under the action of one of the plates
Hence, it is case of couette flow
$\therefore$ vol.of moving plate=0
$\theta=0$
To find:-
i) Point where minimum velocity occur=?
ii) Velocity distribution across any section=?
Solution:-
Velocity distribution of couette flow is
$u=\frac{U}{b}\cdot y+\frac{1}{2u}(-\frac{\partial P}{\partial x})(by-y^2)$........(1)
and discharge per unit width Q
$Q=\frac{Ub}{2}-\frac{b^3}{12\mu}\cdot \frac{\partial P}{\partial x}$
but Net forward discharge
Q=0
$0=\frac{Ub}{2}-\frac{b^3}{12\mu}\cdot \frac{\partial P}{\partial x}$
$\frac{\partial P}{\partial x}=\frac{Ub}{2}\times \frac{12\mu}{b^3}$
$\frac{\partial P}{\partial x}=\frac{6\mu U}{b^2}$
Minimum velocity occurs when,
$\frac{\partial u}{\partial y}=0$
$\therefore$ Differentiating equation (1) w.e.t y and equating to zero
$\therefore \frac{d}{dy}[u=\frac{U}{b}\cdot y-\frac{1}{2u} \frac{\partial P}{\partial x}(by-y^2)]=0$
$\frac{U}{b}-\frac{1}{2u} \frac{\partial P}{\partial x}(by-y^2)=0$
$\frac{U}{b}=\frac{1}{2u} \frac{\partial P}{\partial x}(b-2y)$
$(b-2y)=\frac{U}{b}\times \frac{2u}{\frac{\partial P}{\partial x}}$
$(b-2y)=\frac{U}{b}\times \frac{2\cdot u\cdot b^2}{6\cdot \mu\cdot U}$.......$\because \frac{\partial P}{\partial x}=\frac{6\mu U}{b^2}$
$\therefore 2y=b-\frac{b}{3}$
$\therefore y=\frac{b}{3}$
Hence minimum velocity occurs at $\frac{b}{3}$ from fixed plate.
The magnitude of minimum velocity can be obtained by putting $y=\frac{b}{3}$ in equation (1)
$\therefore u=\frac{U}{b}\cdot y-\frac{1}{2u}\frac{\partial P}{\partial x}(by-y^2)$
$u_{min}=\frac{U}{b}\times \frac{b}{3}-\frac{1}{2u}(\frac{6\mu U}{b^2})[b\times \frac{b}{2}-\frac{b^2}{g}]$
$u_{min}=\frac{U}{3}-\frac{3U}{b^2}[\frac{3b^2}{g}-\frac{b^2}{g}]$
$=\frac{U}{3}-\frac{3U}{b^2}[\frac{2b^2}{g}]$
$=\frac{U}{3}-\frac{2U}{3}$
$u_{min}=-\frac{U}{3}$
ii) Velocity distribution
$u=\frac{U}{b}\cdot y-\frac{1}{2u}\frac{\partial P}{\partial x}(by-y^2)$
$=\frac{U}{b}\cdot y-\frac{1}{2u}(\frac{6\mu U}{b^2})(by-y^2)$
$u=\frac{U}{b}\cdot y-\frac{3U}{b^2}(by-y^2)$
The velocity distribution may be drawn by substituting values of 'y' such as 0.1b, 0.2b, 0.3b etc
y |
0.1b |
0.3b |
0.5b |
0.8b |
$\frac{2}{3}b$ |
u |
-0.17U |
-0.33U |
-0.25U |
0.32U |
0 |