written 5.6 years ago by
teamques10
★ 68k
|
•
modified 5.6 years ago
|
i) Define hypothesis
$H_0:$ data fits to Poisson distribution
$H_a:$ data does not fits to Poisson distribution
For Poisson distribution,
$P_{i}=\frac{e^{-\alpha} \alpha^x}{x !}$
$\alpha=\overline{x}=\frac{\sum f_{i} m_{i}}{n}$
$\therefore \alpha = \frac{0 \times 35 + 1 \times 40 + 2 \times 13 + 3 \times 6 + 4 \times 4 + 5 \times 1 + 6 \times 1}{100}$
$\therefore \alpha = 1.11$
$X_i$ |
$O_i$ |
$P_i$ |
$E_i = h * P_i$ |
$\frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}$ |
0 |
35 |
0.3296 |
32.96 |
0.126 |
1 |
40 |
0.3658 |
36.58 |
0.320 |
2 |
13 |
0.2030 |
20.30 |
2.625 |
3 |
6 $\quad$ | |
0.0751 |
7.51 $\quad$ | |
$\quad$ | |
4 |
4 $\quad$ 12 |
0.0209 |
2.09 $\quad$ 10.16 |
0.333 |
5 |
1 $\quad$ | |
0.0046 |
0.46 $\quad$ | |
$\quad$ | |
6 |
1 $\quad$ | |
0.0010 |
0.10 $\quad$ | |
$\quad$ | |
- |
$\sum = 100$ |
$\sum = 1.0000$ |
$\sum = 100$ |
$\chi_0^2 = 3.400$ |
To find $\alpha$:
We need to estimate value of $\alpha$
$\therefore \quad S=1$
$\therefore \quad d \cdot f=k-s-1=4-1-1=2$
$\because x_{0.05, 2}^{2}=5.99$
$\chi_{0}^{2}=3.404\lt\chi^{2}_{0.05, 2} = 5.99$
$\therefore H_0$ is accepted.
$\therefore$ given data fits to Poisson distribution.
ii) Define hypothesis:
$H_0:$ data fits to Poisson distribution
$H_a:$ data does not fits to Poisson distribution
$\because p_{i}=\frac{e^{-\alpha} \alpha^{x}}{x !} \quad \alpha_{i}=1$
$X_i$ |
$O_i$ |
$P_i$ |
$E_i = h * P_i$ |
$\frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}$ |
0 |
35 |
0.3279 |
36.79 |
0.087 |
1 |
40 |
0.3679 |
36.79 |
0.280 |
2 |
13 |
0.1839 |
18.39 |
1.580 |
3 |
6 $\quad$ | |
0.0613 |
6.13 $\quad$ | |
$\quad$ | |
4 |
4 $\quad$ 12 |
0.0153 |
1.53 $\quad$ 10.16 |
1.963 |
5 |
1 $\quad$ | |
0.0031 |
0.31 $\quad$ | |
$\quad$ | |
6 |
1 $\quad$ | |
0.0006 |
0.06 $\quad$ | |
$\quad$ | |
- |
$\sum = 100$ |
$\sum = 1.0$ |
$\sum = 100$ |
$\chi_0^2 = 3.91 $ |
To find $\alpha$:
We do not estimate value of $\alpha$
$\therefore s = 0$
$\therefore d.f = k - s - 1 = 4 - 0 - 1 = 3$
$\because \chi_{0.05, 3}^2 = 7.81$
$\because \chi_{0}^{2} = 3.91 \lt \chi_{0.05, 3}^{2}=7.81$
$\therefore H_0$ is accepted.
$\therefore$ given data fits to Poisson distribution.