written 5.6 years ago by
teamques10
★ 68k
|
•
modified 5.6 years ago
|
Solution:
$H_0$: The data points are uniformly distributed
$H_1$: Data points are not uniformly distributed
Normalize the data points to (0,1) for K-S Test. The results in following 30 data points are given.
Arrange data points in increasing order and compute $D^{-1}$ and $D^{-}$ (K-S Test)
Table:
$\text{i}$ |
$R(i)$ |
$\frac{i}{N}$ |
$\frac{i}{N}-R(i)$ |
$\frac{i-1}{N}$ |
$R_{i}-\frac{i-1}{n}$ |
1 |
0.06 |
0.033 |
- |
0 |
0.06 |
2 |
0..07 |
0.066 |
- |
0.033 |
0.037 |
3 |
0.172 |
0.100 |
- |
0.066 |
0.106 |
4 |
0.206 |
0.133 |
- |
0.100 |
0.106 |
5 |
0.2016 |
0.166 |
- |
0.133 |
0.083 |
6 |
0.233 |
0.200 |
- |
0.166 |
0.067 |
7 |
0.237 |
0.233 |
- |
0.200 |
0.037 |
8 |
0.273 |
0.266 |
- |
0.233 |
0.040 |
9 |
0.273 |
0.300 |
0.027 |
0.266 |
0.007 |
10 |
0.324 |
0.333 |
0.009 |
0.300 |
0.024 |
11 |
0.363 |
0.400 |
0.003 |
0.333 |
0.030 |
12 |
0.368 |
0.433 |
0.032 |
0.366 |
0.002 |
13 |
0.407 |
0.466 |
0.026 |
0.400 |
0.007 |
14 |
0.452 |
0.500 |
0.014 |
0.433 |
0.019 |
15 |
0.453 |
0.500 |
0.047 |
0.466 |
- |
16 |
0.626 |
0.533 |
- |
0.500 |
0.126 |
17 |
0.673 |
0.566 |
- |
0.533 |
0.140 |
18 |
0.698 |
0.600 |
- |
0.566 |
0.132 |
19 |
0.731 |
0.633 |
- |
0.600 |
0.131 |
20 |
0.732 |
0.666 |
- |
0.633 |
0.099 |
21 |
0.766 |
0.700 |
- |
0.666 |
0.100 |
22 |
0.872 |
0.733 |
- |
0.700 |
0.172 |
23 |
0.876 |
0.766 |
- |
0.733 |
0.143 |
24 |
0.878 |
0.800 |
- |
0.766 |
0.112 |
25 |
0.883 |
0.833 |
- |
0.800 |
0.083 |
26 |
0.901 |
0.866 |
- |
0.833 |
0.068 |
27 |
0.917 |
0.900 |
- |
0.866 |
0.051 |
28 |
0.974 |
0.933 |
- |
0.900 |
0.074 |
29 |
0.988 |
0.966 |
- |
0.933 |
0.055 |
30 |
0.997 |
1.000 |
0.003 |
0.966 |
0.031 |
$D^+ = max_{1 \le i \le 30} \left\{\frac{i}{N}-R_{(i)}\right\}=0.047$
$D^- =\max _{1 \leq i \leq 30}\left\{R_{i}-\frac{i-1}{N}\right\} = 0.172$
$\begin{aligned}
\therefore D &= max(D^+, D^-) \\
&= max(0.047, 0.172) \\
&= 0.172
\end{aligned}$
Critical value $D_\alpha$ for $\alpha = 0.05 \text{ of } N = 30 $
$D_{0.05, 30} = 0.24$
Since $D = 0.172 \lt D_{0.05, 30} = 0.24$
$\therefore H_0 \text{ is not rejected }$