a) According to Reynold's Transport theorem (RTT)
$\frac{dN}{dt}=\frac{\partial}{\partial t}\int \int \int_{cv} \rho \cdot \eta \cdot dt+\int \int _{c.s} \eta \cdot \rho \cdot \overline \nu \cdot \overline {dA}$.............(1)
Mass flow rate equation:
-The system form of conservation of mass is $\frac{dm}{dt}=0$ which states that mass 'm' within system remains constant in time.
-In equation (1), let N=m, then $\eta$ is mass per unit mass
$\therefore \eta =1$
$\therefore \text{equation (1) becomes}$
$0=\frac{\partial}{\partial t}\int \int \int _{c.v} \rho \cdot dt+\int \int _{c.s} \rho \cdot \overline \nu \cdot \overline {dA}$...........(2)
-Consider cylindrical tube as shown below.
- Flow enters the tube at section (1) and exit at (2)
- Now flow is permitted through solid surface comprising the tube.
-In application of conservation of mass some assumptions are made as follows.
-Stream lines at inlet and outlet are parallel to boundary of the c.v. at inlet and outlet respectively in such a way that inlet and exit velocities are perpendicular to respective areas.
-Assuming steady flow
$\therefore \frac{\partial}{\partial t}\int \int \int _{c.v.}\rho \cdot dt = 0$
$\therefore \text{Equation (2) becomes}$
$0=\int\int _{c.s}\rho \overline \nu \cdot dA$...........(3)
above equation is applied to control surface where mass entering or leaving
$\int \int_{c.s(1)} \rho _1 \overline \nu _1 \cdot dA_1+\int \int _{c.s(2)}\rho _2 \overline \nu _2 \cdot dA_2=0$
-If the inlet and outlet velocity vectors are at inlet and outlet perpendicular to their respective areas then all outflow integral dot products are evaluated as
$\rho _2\overline \nu _2 dA_2=\rho _2 \nu _2 dA_2$
and inflows are evaluated as
$\rho _1\overline \nu _1 dA_1=\rho _1 \nu _1 dA_1$
$\therefore$ equation becomes
$\int_{c.s(1)}\rho _1 \nu _1 dA_1=\int_{c.s(2)}\rho _2 \nu _2 dA_2$..............(4)
-If $\rho _1$ & $\rho _2$ do not vary across the inlet and outlet then areas becomes
$\rho _1\int_{c.s(1)} \nu _1 dA_1=\rho _2\int_{c.s(2)} \nu _2 dA_2$
For one dimensional representation
$v_1A_1=\int \int _{c.s(1)}=v_1.dA_1$ and $v_2A_2=\int \int _{c.s(2)}=v_2.dA_2$
$\therefore$ equation becomes
$\rho_1 A_1 v_1=\rho_2 A_2 v_2=m$...........(A)
Here m is mass flow rate in kg/sec
Momentum equation
Selecting linear momentum as property of system
$\therefore N=m.\overline v$ and $\eta=\overline v$
$\therefore$ equation (1) becomes
$\frac{d}{dt}(m\overline v)=\frac{\partial}{\partial t}\int \int \int _{cv} \rho \cdot \overline \nu \cdot dt+\int \int _{c.s} \overline \nu \cdot \rho (\overline \nu \cdot \overline {dA})$.............(B)
But $\frac{d}{dt}(m\overline v)=F_{ext}$
Assuming steady flow
$\therefore \frac{\partial}{\partial t}\int \int \int _{cv} \rho \cdot \overline \nu \cdot dt=0$
Equation (5) becomes
$F_ext=\int \int _{c.s} \rho \cdot \overline \nu \cdot (\overline \nu \cdot \overline {dA})$
but $\rho \cdot \overline \nu \cdot \overline{dA}=m$
Also outlet and inlet velocities changes are $v_2$ and $v_1$
$\therefore$ equation becomes
$F_{ext}=m(v_2-v_1)$
$\therefore F_{ext}=\rho Q[v_2-v_1]$............(B)
Above equation is momentum equation and can be used to solve control volume problems.
b) Data:-
$\rho _1=72 kN/m^2$
$P_1=360 mm=0.36 m$
$Q=300 lps=0.3 m^3/s$
$D_2=240 mm=0.24 m$
$Z_2=2.4 m$
$Z_1=0(Datum)$
$h_F$ and $h_L=0$
To find: $F_{water}=?$
$A=\frac{\pi}{4}D^2$
$\therefore A_1=0.1018 m^2$
$\therefore A_2=0.04524 m^2$
Also, $Q=A_1v_1=A_2v_2$.........continuity equation
$v_1=\frac{Q}{A_1}=\frac{0.3}{0.1018}=2.95 m/sec$
$v_2=\frac{Q}{A_2}=\frac{0.3}{0.04524}=6.63 m/sec$
Now applying bernoulis equation between inlet and outlet
$\frac{P_1}{w_1}+\frac{v_1^2}{2g}+Z_1=\frac{P_2}{w}+\frac{v_2^2}{2g}+Z_2+h_L$
$\frac{72}{9.81}+\frac{2.95^2}{2\times 9.81}+0=\frac{P_2}{9.81}+\frac{6.6313^2}{2\times 9.81}+2.4$
$P_2=30.82 kN/m^2$
weight of water in bend
$wt=W_w\times \text{Volume of bend}=9.81\times 0.14$
$=1.3734 kN$
Applying equation (B) to control volume in x-direction
$\therefore P_1A_1+P_2A_2cos 60+f_x=\frac{wQ}{g}[-v_2cos 60-v_1]$
$\because \rho=\frac{w}{g}$
$(72\times 0.1018)+[30.8201\times0.04524cos 60]+F_x=1\times 0.3[-6.6313cos 60-2.95]$
$\therefore F_x=-9.9064 (\leftarrow)$
Applying equation (B) to control volume in y-direction
$0-P_2A_2sin 60-wt+F_y=\frac{wQ}{g}[v_2sin 60-0]$
$(-30.8201\times 0.04524 sin 60)-1.3734+F_y=1\times 0.3[6.6313\times cos 60]$
$\therefore F_y=3.5756 kN(\uparrow)$
Force exerted by the bend
$F_{bend}=\sqrt{f_x^2+F_y^2}$
$=\sqrt{(-9.9064)^2+(3.5756)^2}$
$F_{bend}=10.532 kN$
$Inclination \Rightarrow \phi =\tan ^{-1}\frac{F_y}{F_x}=\tan ^{-1}(\frac{3.5756}{(9.9064})$
$=19.85^\circ$
According to Newtons $3^{rd}$ law
$F_{bend}=F_{water}$
$\therefore F_{water}=10.352 kN$