written 5.6 years ago by
teamques10
★ 68k
|
•
modified 5.6 years ago
|
Probability of occurrence of each interarrival time = $\frac{1}{10} = 0.1$
Random Digit Assignment for Interarrival time
Interarrival time |
Probability |
Cummulative Prob |
R.D. |
1 |
0.100 |
0.100 |
001 - 100 |
2 |
0.100 |
0.200 |
102 - 200 |
3 |
0.100 |
0.300 |
201 - 300 |
4 |
0.100 |
0.400 |
301 - 400 |
5 |
0.100 |
0.500 |
401 - 500 |
6 |
0.100 |
0.600 |
501 - 600 |
7 |
0.100 |
0.700 |
607 - 700 |
8 |
0.100 |
0.800 |
701 - 800 |
9 |
0.100 |
0.900 |
801 - 900 |
10 |
0.100 |
1.000 |
901 - 000 |
Random Digit Assignment for Service Time
Service Time |
Prob |
Cumulative Prob |
R.D. |
1 |
0.04 |
0.04 |
01 - 04 |
2 |
0.20 |
0.24 |
05 - 24 |
3 |
0.10 |
0.34 |
25 - 34 |
4 |
0.26 |
0.6 |
35 - 60 |
5 |
0.35 |
0.95 |
61 - 95 |
6 |
0.05 |
1 |
96 - 00 |
Random Digit for Interarrival and Service Time
Customer No. |
R.D. for Interarrival |
R.D. for Service time |
1 |
-- |
71 |
2 |
853 |
59 |
3 |
340 |
12 |
4 |
205 |
88 |
5 |
99 |
97 |
6 |
669 |
66 |
7 |
742 |
81 |
8 |
301 |
35 |
9 |
888 |
29 |
10 |
444 |
91 |
Simulation Table
Cust No. |
R.D. Arrival |
Time b/w arri |
Arri Time |
RD Service |
Serv Time |
Time Serv Begins |
Time Cust in queue |
Time serv ends |
Time cust in s/m |
Idle Time of server |
1 |
- |
- |
0 |
71 |
5 |
0 |
0 |
5 |
5 |
0 |
2 |
853 |
9 |
9 |
59 |
4 |
9 |
0 |
13 |
4 |
4 |
3 |
340 |
4 |
13 |
12 |
2 |
13 |
0 |
15 |
2 |
0 |
4 |
205 |
3 |
16 |
88 |
5 |
16 |
0 |
21 |
5 |
2 |
5 |
99 |
1 |
17 |
97 |
6 |
21 |
4 |
27 |
10 |
0 |
6 |
669 |
7 |
24 |
66 |
5 |
27 |
3 |
32 |
8 |
0 |
7 |
742 |
8 |
32 |
81 |
5 |
32 |
0 |
37 |
5 |
0 |
8 |
301 |
4 |
36 |
35 |
4 |
37 |
1 |
41 |
5 |
0 |
9 |
888 |
9 |
45 |
29 |
3 |
45 |
0 |
48 |
3 |
4 |
10 |
444 |
5 |
50 |
91 |
5 ---- 244 |
50 |
0 |
55 |
5 |
2 |
Over a period of 55 minutes, the server was busy for 44 minutes i.e. $\frac{44}{55} \times 100 = 80 \% $ utilization.
Out of 10 customers only 3 had to wait $(\frac{3}{12} \times 10Q) 30 \%$