Data:-
$\phi = x^3-3xy^2,$ $P_{(4,1)}=14kPa,$ $w=9810\frac{N}{m^3}$.........(water)
To find:-
i) To verify valid fluid flow
ii) $\psi=?$
iii) Velocity and pressure at (1,-3)=?
Solution:-
i) In velocity potential function,
velocity component in x-direction 'u' is given by
$u=-\frac{\partial \phi}{\partial x}$
and
velocity component in y-direction 'v' is given by
$v=-\frac{\partial \phi}{\partial y}$
$u=-\frac{\partial \phi}{\partial x}=-\frac{\partial}{\partial x}(x^3-3xy^2)=-(3x^2-2y^2)$
$\therefore u=3y^2-3x^2$
& $v=-\frac{\partial \phi}{\partial y}=-\frac{\partial}{\partial y}(x^3-3xy^2)=-(0-6xy)$
$\therefore u=6xy$
For possible case of flow it should satisfy continuity equation
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\frac{\partial u}{\partial x}=-6x$ & $\frac{\partial v}{\partial y}=6x$
$\therefore \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=-6x+6x=0$..........satisfy
Therefore, it is possible case of flow.
To check whether potential function exist or not it should satisfy case of irrational flow
$W_t=\frac{1}{2}(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y})$
$\frac{\partial v}{\partial x}=6y$ and $\frac{\partial u}{\partial y}=6y$
Here, rotational component is absent, therefore it is valid velocity potential function
ii) Stream function $(\psi)$
$\frac{\partial \psi}{\partial x}=-v$ and $\frac{\partial \psi}{\partial y}=u$
Consider $\frac{\partial \psi}{\partial y}=u$
$\therefore \partial \psi=u.dy$
$\therefore \partial \psi=(3y^2-3x^2)dy$
Integrating above equation w.r.t y
$\psi =\frac{3y^3}{3}-3x^2y+f(x)$
$\psi y^3-3x^2y+f(x)$..............(1)
Differentiating above equation w.r.t x
$\frac{\partial \psi}{\partial x}=0-6xy+f'(x)$............(2)
But $\frac{\partial \psi}{\partial x}=-v=-6xy$
Equation (2) becomes
$-6xy=-6xy+f'(x)$
$\therefore f'(x)=0$
Integrating w.r.t x
$\therefore f(x)=x$............put in equation (1)
$\psi=y^3-3x^2y+x$
(iii)Velocity and pressure at (1,-3)
Velocity at (1,-3) i.e., at x=1 & y=-3
$u=3y^2-3x^2=3(-3)^2-3(1)^2$
$\therefore u=24 units$
and $v=6xy=6\times 1\times -3=-18 units$
$v_{(1,-3)}=\sqrt{u^2+v^2}=\sqrt{(24)^2+(18)^2}$
$=30 units$
Velocity at (4,1)
$u=3y^2-3x^2=-45 units$
$v=6xy=24 units$
$v_(4,1)=\sqrt{u^2+v^2}=51 units$
Applying Bernoulis equation between (1,-3) & (4,1)
$\frac{P_{(1,-3)}}{W_w}+\frac{V_{(1,-3)}^2}{2\times 9}+t_{(1,-3)}=\frac{P_{(4,1)}}{W_w}+\frac{V_{(4,1)}^2}{2\times 9}+t_{(4,1)}$
$\frac{P_{(1,-3)}}{9810}+\frac{30^2}{2\times 9.81}=\frac{14\times 10^3}{9810}+\frac{51^2}{2\times 9.81}$
$P_{(1,-3)}=64.5\times 10^3N/m^3$