written 5.6 years ago by | modified 2.7 years ago by |
A door in a tank in the form of quadrant of a cylinder of 1.5 m radius and 8 m wide. Calculate the resultant force on the door and its location.
written 5.6 years ago by | modified 2.7 years ago by |
A door in a tank in the form of quadrant of a cylinder of 1.5 m radius and 8 m wide. Calculate the resultant force on the door and its location.
written 5.6 years ago by | • modified 5.6 years ago |
Data:-
Radius R=1.5 m
Width = 8 m
To find:-
Resultant Force $(F_R)=?$
location $\theta=?$
HINT:-
$F_R=\sqrt{F_x^2+F_y^2}$
$\theta=\tan ^{-1}(\frac{F_y}{F_x})$
Solution:
a) Horizontal component $(F_x)$
$F_x=W_w\cdot A\cdot F$
Here, $F=\frac{1.5}{2}=0.75m$
$A=1.5\times 8=12 m^2$
$W_w=9810 N/m^2$
$\therefore F_x=9810\times 12]times 0.75$
$=88.29\times 10^3N$
b) Vertical component $(F_y)$
$F_y=W_w\times \text{ cls area of ABC}\times \text{ width of door}$
$=W_w\times \frac{\pi}{4}\times 1.5^2\times 8$
$138.685\times 10^3N$
Now,
Resultant force R$=\sqrt{F_x^2+F_y^2}=\sqrt{(88.29\times 10^3)^2+(138.685\times 10^3)^2}$
$=164.68\times 10^3N$
$\theta=\tan ^{-1}\frac{F_y}{F_x}=57.51^\circ$