Data:-
$u=0.01[1-1000y^2]$; where $u\rightarrow m/s, y\rightarrow m$
$u=10^{-3}N-s/m^2$; Gap $t=2 cm = 2\times 10^{-2}m$
To Find:- $T_1=?$ $T_2=?$
Solution:
Plate (1)
Let us consider two layers of water one is fixed with plate (1) and other moves with flow
$\therefore dy=\frac{t}{2}=\frac{2\times 10^{-2}}{2}=10^{-2}m$
We have,
$u=0.01[1-1000y^2]$
$=0.01[1-1000(10^{-2})^2]$..........$[\because y=10^{-2}m]$
$=-0.09m/s$
Now, By using Newtons law of viscosity,
$T_1=u\cdot \frac{du}{dy}$
But $du=u-0=u=-0.09m/s$
$T_1=10^{-3}\times \frac{-0.09}{10^{-2}}$
$=-9\times 10^{-3}N/m^2$
Plate (2)
Shear stress (T) will be same for plate (2) as distance and viscosity is same (Refer shear stress distribution)
$\therefore T_2=-9\times 10^{-3}N/m^2$