Data:-
$m_{air}=36 gm$
$m_{water}=34 gm$
sp. gravity $S_{gold}=19.3$
sp. gravity $S_{copper}=8.9$
To Find:- $W_{copper}=?$
Solution:-
$m_{air}=36 gm$
$\therefore \text{ weight of ornament in air is } W_{air}=36\times 10^{-3}\times 9.81=0.35316 N$
$m_{water}=34 gm$
$\therefore \text{ weight of ornament in water is } W_{water}=34\times 10^{-3}\times 9.81=0.33354 N$
$\text{Buoyant Force }(F_B)=W_{air}-W_{water}=0.01962 N$
$\text{Weight of fluid displaced }(F_B)=W_{water}\times \text{ Vol. of ornament}$
$0.01962=9810\times \text{ Vol. of ornament}$
$\therefore \text{ Vol. of ornament}=2\times 10^{-6} m^3$
But, ornament contains Gold and Copper
$\therefore \text{ Volume of ornament (V) }=V_{gold}+V_{copper}$............(1)
$V_{gold}\frac{\text{Weight of gold}}{W_{gold}}$
$V_{gold}\frac{\text{Weight of gold}}{19.3\times 9810}$
Similarly,
$V_{copper}\frac{\text{Weight of copper}}{W_{copper}}$
$V_{copper}\frac{\text{Weight of copper}}{8.9\times 9810}$
$\therefore$ Equation (1) becomes
$2\times 10^{-6}=V_{gold}+V_{copper}$
$2\times 10^{-6}=\frac{W_{gold}}{19.3\times 9810}+\frac{W_{copper}}{8.9\times 9810}$..........(2)
$\text{Also, weight of ornament}=W_{gold}+W_{copper}$
$0.35316=W_{gold}+W_{copper}$...........(3)
Solving equation (2) and equation (3)
$W_{gold}=0.33133N$ and $W_{copper}=0.0218N$