written 5.6 years ago by | modified 2.6 years ago by |
Use the dual simplex method to save the following LPP:
Minimize, $z=2x_{1}+x_{2}$
subject to,
$3x_{1}+x_{2} \ge 3$
$4x_{1}+3x_{2} \ge 6$
$x_{1}+2x_{2} \le 3$
$x_{1}, \ x_{2} \ge 0$
written 5.6 years ago by | modified 2.6 years ago by |
Use the dual simplex method to save the following LPP:
Minimize, $z=2x_{1}+x_{2}$
subject to,
$3x_{1}+x_{2} \ge 3$
$4x_{1}+3x_{2} \ge 6$
$x_{1}+2x_{2} \le 3$
$x_{1}, \ x_{2} \ge 0$
written 5.6 years ago by |
We have, $z=2x_{1}+x_{2}$
Maximise, $z'=-z=-2x_{1}-x_{2}-0s_{2}-0s_{3}-MA_{1}-MA_{2}$ -----------------(1)
Subject to, $3x_{1}+x_{2}+0s_{2}+0s_{3}+A_{1}+0A_{2}=3$ ---------------(2)
$4x_{1}+3x_{2}-s_{2}+0s_{3}+0A_{1}+A_{2}=6$ ---------------(3)
$x_{1}+2x_{2}+0s_{2}+0s_{3}+0A_{1}+0A_{2}=3$ ----------------(4)
Multiply (2) and (3) by M and to (1),
Maximise, $=z'=(-2+7M)X_{1}+(-1+4M)X_{2}-Ms_{2}+0s_{3}-A_{1}-0A_{2}-9M$
$=z'+(2-7M)X_{1}+(1-4M)X_{2}+Ms_{2}+0s_{3}+0A_{1}+0A_{2}=-9M$
$X_{1}=\cfrac{3}{5}, \ X_{2}=\cfrac{6}{5}$
$z'_{max}=\cfrac{-12}{5}$
$z'_{min}=\cfrac{12}{5}$