0
591views
Chapter 2 .

If A=[π2π03π2], find sin A.

1 Answer
0
0views

Solution:

A=[π2π03π2]

C.E. is given by, |AλI|=0

|π2π03π2|=0

(π2λ)(3π2λ)0=0

λ=π2 & λ=3π2

Let ϕ(A)=sin A=αA+βI ------------(I)

Since λ satisfies the above equation,

sin λ=αλ+β --------------(2)

Put λ=π2 in (2),

sin π2=απ2+β

1=απ2+β -------------(3)

Put λ=3π2 in (2),

sin 3π2=α3π2+β

1=α3π2+β -------------(4)

Solving equations (3) and (4) simultaneously, we get,

α=2π -----------(5)

β=2 --------------(6)

Put (5) and (6) in (1),

sin A=2π[π2π03π2]+2[1001]=[1203]+[2002]=[1201]

Please log in to add an answer.