0
641views
Find all the basic solution of the following problem:

Maximise:

$z=x_{1}+3x_{2}+3x_{3}$

subject to,

$x_{1}+2x_{2}+3x_{3}=4$

$2x_{1}+3x_{2}+5x_{3}=7$

$x_{1}, \ x_{2}, \ x_{3} \ge 0$

1 Answer
0
1views

Solution:

Sr. No. Non Basic Variable Basic Variable Equation and the values of the basic variable Value of z Is the solution basic?
1 $x_{3}=0$ $x_{1}, \ x_{2}$ $x_{1}+2x_{2}=4 \\ 2x_{1}+3x_{2}=7 \\ x_{1}=2, \ x_{2}=1$ 5 Yes
2 $x_{2}=0$ $x_{1}, \ x_{3}$ $x_{1}+3x_{3}=4 \\ 2x_{1}+5x_{3}=7 \\ x_{1}=1, \ x_{3}=1$ 4 Yes
3 $x_{1}=0$ $x_{2}, \ x_{3}$ $2x_{2}+3x_{3}=4 \\ 3x_{2}+5x_{3}=7 \\ x_{2}=-1, \ x_{3}=2$ - No
Please log in to add an answer.