written 5.7 years ago by |
2. Estimation of internal loads:
The internal loads consist of load due to occupants, due to lighting, due to equipment and appliances and due to products stored or processes being performed in the conditioned space.
a) Load due to occupants: The internal cooling load due to occupants consists of both sensible and latent heat components. The rate at which the sensible and latent heat transfer take place depends mainly on the population and activity level of the occupants. Since a portion of the heat transferred by the occupants is in the form of radiation, a Cooling Load Factor (CLF) should be used similar to that used for radiation heat transfer through fenestration. Thus the sensible heat transfer to the conditioned space due to the occupants is given by the equation:
Table below shows typical values of total heat gain from the occupants and also the sensible heat gain fraction as a function of activity in an air conditioned space. However, it should be noted that the fraction of the total heat gain that is sensible depends on the conditions of the indoor environment. If the conditioned space temperature is higher, then the fraction of total heat gain that is sensible decreases and the latent heat gain increases, and vice versa.
The value of Cooling Load Factor (CLF) for occupants depends on the hours after the entry of the occupants into the conditioned space, the total hours spent in the conditioned space and type of the building. Values of CLF have been obtained for different types of buildings and have been tabulated in ASHRAE handbooks.
Since the latent heat gain from the occupants is instantaneous the CLF for latent heat gain is 1.0, thus the latent heat gain due to occupants is given by:
b) Load due to lighting: Lighting adds sensible heat to the conditioned space. Since the heat transferred from the lighting system consists of both radiation and convection, a Cooling Load Factor is used to account for the time lag. Thus the cooling load due to lighting system is given by:
The usage factor accounts for any lamps that are installed but are not switched on at the time at which load calculations are performed. The ballast factor takes into account the load imposed by ballasts used in fluorescent lights. A typical ballast factor value of 1.25 is taken for fluorescent lights, while it is equal to 1.0 for incandescent lamps. The values of CLF as a function of the number of hours after the lights are turned on, type of lighting fixtures and the hours of operation of the lights are available in the form of tables in ASHRAE handbooks.
c) Internal loads due to equipment and appliances: The equipment and appliances used in the conditioned space may add both sensible as well as latent loads to the conditioned space. Again, the sensible load may be in the form of radiation and/or convection. Thus the internal sensible load due to equipment and appliances is given by:
The installed wattage and usage factor depend on the type of the appliance or equipment. The CLF values are available in the form of tables in ASHARE handbooks. The latent load due to appliances is given by:
Table below shows typical load of various types of appliances:
For other equipment such as computers, printers etc, the load is in the form of sensible heat transfer and is estimated based on the rated power consumption. The CLF value for these equipment may be taken as 1.0 as the radiative heat transfer from these equipment is generally negligible due to smaller operating temperatures. When the equipment are run by electric motors which are also kept inside the conditioned space, then the efficiency of the electric motor must be taken into account. Though the estimation of cooling load due to appliance and equipment appears to be simple as given by the equations, a large amount of uncertainty is introduced on account of the usage factor and the difference between rated (nameplate) power consumption at full loads and actual power consumption at part loads. Estimation using nameplate power input may lead to overestimation of the loads, if the equipment operates at part load conditions most of the time.
If the conditioned space is used for storing products (e.g. cold storage) or for carrying out certain processes, then the sensible and latent heat released by these specific products and or the processes must be added to the internal cooling loads. The sensible and latent heat release rate of a wide variety of live and dead products commonly stored in cold storages are available in air conditioning and refrigeration handbooks. Using these tables, one can estimate the required cooling capacity of cold storages.
Thus using the above equations one can estimate the sensible (Qs,r), latent (Ql,r) and total cooling load (Qt,r) on the buildings. Since the load due to sunlit surfaces varies as a function of solar time, it is preferable to calculate the cooling loads at different solar times and choose the maximum load for estimating the system capacity. From the sensible and total cooling loads one can calculate the Room Sensible Heat Factor (RSHF) for the building. As discussed in an earlier chapter, from the RSHF value and the required indoor conditions one can draw the RSHF line on the psychrometric chart and fix the condition of the supply air.
Estimation of the cooling capacity of the system
In order to find the required cooling capacity of the system, one has to take into account the sensible and latent loads due to ventilation, leakage losses in the return air ducts and heat added due to return air fan (if any).
1. Load on the system due to ventilated air:
Figure below shows a schematic of an air conditioning system with the cooling coil, supply and return ducts, ventilation and fans. The cooling coil has a by-pass factor X. Then the cooling load on the coil due to sensible heat transfer of the ventilated air is given by:
where Mvent and Vvent are the mass and volumetric flow rates of the ventilated air and X is the by-pass factor of the coil.
The latent heat load on the coil due to ventilation is given by:
where Wo and Wi are the humidity ratios of the ambient and conditioned air, respectively and hfg is the latent heat of vapourization of water.
2. Load on the coil due to leakage in return air duct and due to return air fan:
If there is leakage of air and heat from or to the return air duct, additional capacity has to be provided by the cooling coil to take care of this. The sensible heat transfer to the return duct due to heat transfer from the surroundings to the return duct depends on the surface area of the duct that is exposed to outside air (Aexposed), amount of insulation (Uins) and temperature difference between outdoor air and return air, i.e.,
The amount of sensible and latent heat transfer rates due to air leakage from or to the system depends on the effectiveness of the sealing provided and the condition of the outdoor air and return air. Since the load due to return air duct including the return air fan (Q return duct) are not known a priori an initial value (e.g. as a fraction of total building cooling load) is assumed and calculations are performed. This value is modified at the end by taking into account the actual leakage losses and return fan power consumption.
Now the total sensible load on the coil (Qs,c) is obtained by summing up the total sensible load on the building (Qs,r), sensible load due to ventilation (Qs,vent) and sensible load due to return air duct and fan (Qs,return duct), that is:
Similarly the total latent load on the coil (Ql,c) is obtained by summing up the total latent load on the building (Ql.r), latent load due to ventilation (Ql,vent) and latent load due to return air duct and fan (Ql,return duct), that is:
Finally the required cooling capacity of the system which is equal to the total load on the coil is obtained from the equation:
One can also calculate the sensible heat factor for the coil (CSHF) and draw the process line on the psychrometric chart and find the required coil Apparatus Dew Point Temperature (coil ADP) from the above data.
As mentioned, the method discussed above is based on CLTD/CLF as suggested by ASHRAE. It can be seen that with the aid of suitable input data and building specifications one can manually estimate the cooling load on the building and the required cooling capacity of the system. A suitable safety factor is normally used in the end to account for uncertainties in occupants, equipment, external infiltration, external conditions etc. This relatively simple method offers reasonably accurate results for most of the buildings. However, it should be noted that the data available in ASHRAE handbooks (e.g. CLTD tables, SHGF tables) have been obtained for a specific set of conditions. Hence, any variation from these conditions introduces some amount of error. Though this is generally taken care by the safety factor (i.e., by selecting a slightly oversized cooling system), for more accurate results one has to resort actual building simulation taking into account on all relevant factors that affect the cooling load. However, this could be highly complex mathematically and hence time consuming and expensive. The additional cost and effort may be justified for large buildings with large amount of cooling loads, but may not be justified for small buildings. Thus depending upon the specific case one has to select suitable load calculation method.
Heating load calculations
As mentioned before, conventionally steady state conditions are assumed for estimating the building heating loads and the internal heat sources are neglected. Then the procedure for heating load calculations becomes fairly simple. One has to estimate only the sensible and latent heat losses from the building walls, roof, ground, windows, doors, due to infiltration and ventilation. Equations similar to those used for cooling load calculations are used with the difference that the CLTD values are simply replaced by the design temperature difference between the conditioned space and outdoors. Since a steady state is assumed, the required heating capacity of the system is equal to the total heat loss from the building. As already mentioned, by this method, the calculated heating system capacity will always be more than the actual required cooling capacity. However, the difference may not be very high as long as the internal heat generation is not very large (i.e., when the building is not internally loaded). However, when the internal heat generation rate is large and/or when the building has large thermal capacity with a possibility of storing solar energy during day time, then using more rigorous unsteady approach by taking the internal heat sources into account yields significantly small heating small capacities and hence low initial costs. Hence, once again depending on the specific case one has to select a suitable and economically justifiable method for estimating heating loads.