0
589views
written 2.7 years ago by |
$\therefore$ Zi = $R_1$ || $R_2$
$\therefore$ $Zi_2$ = $R_3$ || $R_4$
$\therefore$ $Zo_1 = rd_1 || RD_1$
Zo = $rd_2 || RD_2$
|$A_2| = gm_2 (rd_2||RD_2$)
|$A_1| = gm_1 (rd_1 || RD_1 || Zi_2$)
$\therefore$ A = | $A_1 | x | A_2$ |