0
1.2kviews
The Newton Method
1 Answer
0
0views

Q:- Minimize f(x1,x2)=2x12x2+2x21+2x1x2+x22 starting from the point

X1=[00]

Solution:- X1+i=Xi[Ji]1fi

and

f=[fx1fx2]=[2+4x1+2x22+2x1+2x2]

Hence [J1]=[2fx212fx1x22fx1x22fx22]X1=[4222]

=[J1]1=1/4[2224]=[1212121]

g1=f1=[fx1fx2]X1=[2+4x1+2x22+2x1+2x2](0,0)=[22]

Thus,

=X2=X1[J1]1g1=[00][1212121][22]=[00][23]=[23]

To check if X2 is the optimum point ,we evaluate,

=f2=[fx1fx2]X2=[2+4×2+2×32+2×2+2×3]=[00]

Thus,X2 is the optimum point.

Please log in to add an answer.