0
1.2kviews
written 6.0 years ago by |
Q:- Minimize f(x1,x2)=2x1−2x2+2x21+2x1x2+x22 starting from the point
X1=[00]
Solution:- X1+i=Xi−[Ji]−1∇fi
and
∇f=[∂f∂x1∂f∂x2]=[2+4x1+2x2−2+2x1+2x2]
Hence [J1]=[∂2f∂x21∂2f∂x1∂x2∂2f∂x1∂x2∂2f∂x22]X1=[4222]
=[J1]−1=1/4[2−2−24]=[12−12−121]
g1=∇f1=[∂f∂x1∂f∂x2]X1=[2+4x1+2x2−2+2x1+2x2](0,0)=[2−2]
Thus,
=X2=X1−[J1]−1g1=[00]−[12−12−121][2−2]=[00]−[2−3]=[−23]
To check if X2 is the optimum point ,we evaluate,
=∇f2=[∂f∂x1∂f∂x2]X2=[2+4×−2+2×3−2+2×−2+2×3]=[00]
Thus,X2 is the optimum point.