(1)$rx^n$
$\sum M_A=0$
$100\times 5-V_B\times 20=0$
$V_B=25kN (\uparrow)$
$\sum F_y=0(\uparrow +ve)$
$V_A-100+25=0$
$V_A=75kN(\uparrow)$
C is an internal hinge
Consider part CB
$B.M_c=0$
$25\times 10-H\times 4=0$
$H=62.5kN(\leftarrow)$
$H_A=H_B=62.5kN$
(2) Bending moment calculation:
Consider portion CA
$B.M_D=75\times 5-62.5\times y$
Note:- In circular arch
$y=\sqrt{R^2-x^2}-R+h$
$R=\frac{l^2}{8h}+\frac{h}{2}$
$y=\sqrt{R^2-x^2}-R+h$ -------------considering as origin
$R=\frac{l^2}{8h}+\frac{h}{2}=\frac{20^2}{8\times 4}+\frac{4}{2}=14.5m$
$y=\sqrt{14.5^2-5^2}-(14.5-4)$
$=3.11m$
At x=5m from C, y=3.11m
$B.M_D=75\times 5-62.5\times 3.11$
$=180.63kNm$
Max positive B.M=180.63kN.m
Consider portion CB
$BM_E=25\times(10-x)-62.5\times y$
$=-62.5y+25(10-x)$
$=-62.5[\sqrt{210.25-x^2}-10.5]+25[10-x]$
$=-62.5\sqrt{210.25-x^2}-10.5]+656.25+250-25x$ ------(1)
$M_x$ to be maximum $\frac{d}{dx}M_x=0$
$\frac{-62.5}{2\sqrt{210.25-x^2}}\times {-2x}+0-25=0$
By solving
$x=5.38m$
Put in equation (1)
$=-62.5\sqrt{210.25-5.38^2}+656.25+250-25\times 5.38$
$B.M_E=-69.811kN.m$
Max negative B.M=69.811kN.m
(3)B.M.D:-