0
747views
MODULE 6&7-Part 2 - Q.1

3-Hing Parabolic arch supported different level. Find:

1) Reaction

2)Max +ve & -ve B.M.

3)N & F at 3m from A.

enter image description here

1 Answer
0
0views

Note: When l1 & l2 are not given first we have to calculate the l1 & l2 first.

Using formula

l1=lh1(h1+h2)

l2=lh2(h1+h2)

l1=lh1(h1+h2)=22.53(3+6.75)=9m

l=l1+l2

22.5=9+l2

l2=22.59=13.5m

(1) Support rxn calculation:

Consider part (CA)

BMc=0

VA×9H×330×9×92=0

9VA3H1215=0

VA=3H+12159----------(1)

Consider part (CB)

BMc=0

VB×13.5H×6.75=0

VB=6.75H13.5----------(2)

Put H=162kN in equation (1) & (2)

VA=189kN

VB=81kN

Fy=0

VA+VB30×9=0

VA+VB=270--------------(3)

3H+12159+6.75H13.5=270

H=162kN

(2)N & F is 3m from A

Net unbalance vertical force

18930×3=99kN

enter image description here

F=99cosθ162sinθ

F=24.68kN

N=162cosθ+99sinθ

N=188.2kN

To find Q

tanθ=dydx

But y=4hl2(lxx2)

y=4×3182[18xx2]

Imp Note:- As the parabola is supported at different level, never take l = 22.5m (all span)

Formula:- y=4hl2(lxx2) is valid only when it is symmetrical parabola.

To create imaginary symmetric parabola take h=h1=3m

Take l=2×l,=2×9=18

l=18m

dydx=12182[182x]

Put x=3m

=12182[182×3]

=0.4m

θ=tan1(0.4)

θ=23.96

(3) max +ve & -ve B.M.

enter image description here

Consider part (CA)

B.M.x=189×x162×y30x2y

y=4×3182(18xx2)

=189×x162×127(18x2)15x2--------------(1)

For Mx to be Maximum ddx=0

18916227(182x)30x=0

x=4.5m

Put x=4.5m in equation (1)

B.Mx=189×4.516227(18×4.54.52)15×4.52

B.Mx=182.25kNm (sagging) +ve BM

Take section CB

enter image description here

B.M.x=81×x162×y

But y=4hl2(lxx2)

=4×6.75272(27xx2)

B.M.x=81×x162×127(27xx2)

For Mx to be maximum ddx=0

8116227(272x)=0

x=6.75m

=81times6.7516227(27×6.756.752)

BMx=273.37kNm (Hogging) -ve BM

Please log in to add an answer.