written 6.0 years ago by | modified 3.1 years ago by |
3-Hing Parabolic arch supported different level. Find:
1) Reaction
2)Max +ve & -ve B.M.
3)N & F at 3m from A.
written 6.0 years ago by | modified 3.1 years ago by |
3-Hing Parabolic arch supported different level. Find:
1) Reaction
2)Max +ve & -ve B.M.
3)N & F at 3m from A.
written 6.0 years ago by |
Note: When l1 & l2 are not given first we have to calculate the l1 & l2 first.
Using formula
l1=l√h1(√h1+√h2)
l2=l√h2(√h1+√h2)
l1=l√h1(√h1+√h2)=22.5√3(√3+√6.75)=9m
l=l1+l2
22.5=9+l2
l2=22.5−9=13.5m
(1) Support rxn calculation:
Consider part (CA)
BMc=0
VA×9−H×3−30×9×92=0
9VA−3H−1215=0
VA=3H+12159----------(1)
Consider part (CB)
BMc=0
VB×13.5−H×6.75=0
VB=6.75H13.5----------(2)
Put H=162kN in equation (1) & (2)
VA=189kN
VB=81kN
∑Fy=0
VA+VB−30×9=0
VA+VB=270--------------(3)
3H+12159+6.75H13.5=270
H=162kN
(2)N & F is 3m from A
Net unbalance vertical force
189−30×3=99kN
F=99cosθ−162sinθ
F=24.68kN
N=162cosθ+99sinθ
N=188.2kN
To find Q
tanθ=dydx
But y=4hl2(lx−x2)
y=4×3182[18x−x2]
Imp Note:- As the parabola is supported at different level, never take l = 22.5m (all span)
Formula:- y=4hl2(lx−x2) is valid only when it is symmetrical parabola.
To create imaginary symmetric parabola take h=h1=3m
Take l=2×l,=2×9=18
∴l=18m
dydx=12182[18−2x]
Put x=3m
=12182[18−2×3]
=0.4m
θ=tan−1(0.4)
θ=23.96∘
(3) max +ve & -ve B.M.
Consider part (CA)
B.M.x=189×x−162×y−30x2y
y=4×3182(18x−x2)
=189×x−162×127(18−x2)−15x2--------------(1)
For Mx to be Maximum ddx=0
189−16227(18−2x)−30x=0
x=4.5m
Put x=4.5m in equation (1)
B.Mx=189×4.5−16227(18×4.5−4.52)−15×4.52
B.Mx=182.25kNm (sagging) +ve BM
Take section CB
B.M.x=81×x−162×y
But y=4hl2(lx−x2)
=4×6.75272(27x−x2)
B.M.x=81×x−162×127(27x−x2)
For Mx to be maximum ddx=0
81−16227(27−2x)=0
x=6.75m
=81times6.75−16227(27×6.75−6.752)
BMx=−273.37kNm (Hogging) -ve BM