Let us,
(1) Analyze the girder for live load:
Considering the girder as a simply supported girder and taking moments about the left end A,
$\sum M_A=0$
$-V_B\times 60+(20\times 15)\times(15+\frac{15}{2})=0$
$V_B=112.5kN$
$\sum F_y=0(\uparrow +ve)$
$V_A-(20\times 15)+112.5=0$
$V_A=187.5kN$
Beam moment at C
$BM@C=112.5\times 30=3375kNm$
Horizontal reaction for the cable
$H_e=\frac{B,M_C}{h}=\frac{3375}{7.5}=450kN$
Let we be the uniformly distributed load transmitted of the cable,
$H_e=\frac{Wel^2}{8h}=\frac{W_e\times 60^2}{8\times 7.5}=450$
$\therefore W_e=7.5kN/m$
(2) Analysis for the dead load
Free B.M, for the girder at the centre due to dead load
$M'_e=\frac{Wl^2}{8}=\frac{10\times 60^2}{8}=4500kNm$
Horizontal reaction at cable end due to dead load
$H'=\frac{M'_e}{h}=\frac{4500}{7.5}=600kN$
Let w'e=uniformly distributed load transmitted to the cable
$H'=\frac{Wl^2}{8h}=600=\frac{w'e\times 60^2}{8\times 7.5}$
$w'e=w_d=10kN/m$
Vertical reaction at each end of the cable
$V=\frac{(w_e+w'_e)l}{2}=(7.5+10)\frac{60}{2}=525kN$
Horizontal reaction at each end of the cable
$H=H_c+H'=450+600=1050kN$
Maximum tension in the cable
$T_{max}=\sqrt{V^2+H^2}$
$=\sqrt{525^2+1050^2}=1173.9357kN$
$T_{max}=1173.9357kN$