written 5.6 years ago by | modified 2.6 years ago by |
Using unit load method or castigliano's theorem for rigid jointed frame shown in fig.
Calculate a horizontal displacement of roller support at D.
Take $E=GPa, I=4\times 10^8mm^4$
written 5.6 years ago by | modified 2.6 years ago by |
Using unit load method or castigliano's theorem for rigid jointed frame shown in fig.
Calculate a horizontal displacement of roller support at D.
Take $E=GPa, I=4\times 10^8mm^4$
written 5.6 years ago by | • modified 5.6 years ago |
Solution:
$\sum M_A=$
$25\times 5+30\times 4\times \frac{4}{2}-V_D\times 7=0$
$V_D= 52.14 kN$
$\sum F_y=0$
$V_A-30\times 30\times 4+52.14=0$
$V_A=67.86kN$
$\sum F_y=0(\rightarrow +ve)$
$H_A+25=0$
$H_A=-25kN$
$H_A=25kN(\leftarrow)$
Region | Origin | Limit | $M_u$ | $m_u$ | EI |
---|---|---|---|---|---|
AB | A | 0-5 | 25x | 1x | EI |
BC | C | 0-4 | $52.14(x+3)-\frac{30x^2}{2}$ $=52.14x+156.42-15x^2$ | $1\times 5$ | EI |
CD | D | 0-5.83 | $52.14cos\theta x$ $=(26.83 x)$ | $1sin \theta x$ $=(0.86x)$ | EI |
$y_D=\int _0^L\frac{Mm}{EI}dx$
$\frac{1}{EI}[\int _0^5(25x)(1x)dx \int _0^4(52.14x+156.42-15x^2)(1\times 5)dx+\int _0^{5.83}(26.83x)(0.86x)dx]$
$\frac{1}{EI}[1041.67+3614+1524.07]$
$y_D=\frac{6179.74}{EI}$
$1MPa=1N/mm^2$
$1Pa=1N/m^2=10^9N/m^2$
$y_D=\frac{6179.74}{200\times 4\times 10^8\times 10^6\times 10^{-12}}$
$y_D=0.077m(\rightarrow)$
$y_D=77mm(\rightarrow)$