0
5.9kviews
Question 5 .

.A cantilever bean made of cold drawn carbon steel of circular cross section as shown in fig. is subjected to a load which varies from -F to 3F. Determine the maximum load that this member can withstand for an indefinite life using FOS as 2. The theoretical stress concentration factor is 1.42 and the notch sensitivity is 0.9. Assume the following values. Ultimate stress = 550 $N/mm^2$, Yield stress = 470 $N/mm^2$, size factor = 0.85, surface finish factor = 0.89.

1 Answer
0
1.1kviews

enter image description here

$W_{min}=-F$

$W_{max}=3F$

$FOS=2$

$K_f=2$

$q=0.9$

$\sigma _u=550N/mm^2$

$\sigma _y=470N/mm^2$

$K_b=0.85$

$K_a=0.89$

$K_c=1$.....Assume 50% reliability (Refer table in textbook)

$\sigma _{-1}'=0.5\sigma _u=0.5\times 550=275 MPa$

Actual endurance limit

$\sigma _{-1}=(0.89)(0.85)(1).\frac{275}{1.378}$

$\sigma _{-1}=150.97 MPa$

$M_{max}=3F\times 125=375F$

$M_{min}=-F\times 125=-125F$

$\sigma _{b_{max}}=\frac{M_{max}}{Z}=\frac{375F}{\frac{\pi}{32}d^3}=\frac{375F}{\frac{\pi}{32}(13)^3}=1.738F$

$\sigma _{min}=\frac{M_{min}}{Z}=\frac{-125F}{\frac{\pi}{32}(13)^3}=-0.5795F$

$\sigma _M=\frac{1.738F+(-0.5795F)}{2}=0.57925F$

$\sigma _a=\frac{1.738F-(-0.5795F)}{2}=1.159F$

Soderberg equation,

$\frac{1}{2}=\frac{0.57925F}{470}+\frac{1.159F}{150.97}$

$F=56.11N$

Please log in to add an answer.