written 6.0 years ago by |
Q.1 Two rods are connected by sleeve and 2 cotters. They are subjected to tensile load of 40 KN i) Select suitable material, FOS and design stresses with justification ii) Determine the dimensions of various failure and indicate area involved in each failure iii) Draw the dimensional sketch of joint
1) Selection of material:-
c-20...PSG 1.9
σu=480 N/mm2
- σy=260 N/mm2
2) Selection of FOS:- n=4
3) Permissible stresses;-
A.
σt=σyFOS=2604=65N/mm2
B.
τ=0.5×σyFOS=0.5×2604=32.5≈32N/mm2
C
σu=1.6σt=1.6×65=104N/mm2
A. Design Procedure
I) Design of Rod
a) Diameter of rod;-
Consider tensile failure of rod at end to determine 'd'
σt=pA=σt×π4d2=P
65×π4(d2)=40×103
d=27.99 mm
d≈=28 mm
b) Determination of d2and t
Consider, tensile failure across slot of rod
σt=pA
σt×[π4d22×d2×t]=P
65×[π4d22−(d2×t)]=40×103....(1)
c) Crushing of cotter in slot of rod
σcr=PA
σcr[d2×t]=P
104[d2×t]=40×103
d2×t=384.61
substitute in (1)
65×[π4d22−384.61]=40×103
d2=35.68mm≈36mm
t=10.77mm ≈11mm
d) Determination of length of rod beyond slot (i.e,l) shear failure of rod (double shear)
τ=PA
32×2(d2×l)=40×103
32×2(36×l)=40×103
l=17.361 mm
l≈18mm
II) Design of sleeve.
a) Determination of sleave outer diameter (i.,e d1)
Tensile failure of sleeve across slot
σt=PA
∴σt[π4(d21−d22)−(d1−d2)t]=p
∴65[π4(d21−362)−(d1−36)11]=40×103
d1=47.3 mm
d1=≈48mm
III) Design of Cotter:-
Shear failure of cotter (double shear)
τ=PA
τ[2×6×t]=p
32×[2×6×11]=40×103
b=56.81≈57.mm
Consider bending of cotter
Mmax=P2[13(d12−d22)+(d22)]−(P2)(d24)
=40×1032[13(482−362)+(362)]−(40×1032)(364)
Mmax=220×103N−mm
I=tb312=11(57)312=169.76×103mm4
y=b2=572=28.5 mm
σb=220×103169.76×103×28.5=36.9 N/mm2
σt=65 N/mm2
∴ Design is safe (if design fails then increase mean width of cotter, b)
IV) Miscellaneous dimensions
a) length of sleave = 8d
=8×28=224 mm
b) length of rod =9d
=9×28=252mm
c) length of cotter
=d1+10mm=48+10=58 mm
d) Maximum width of cotter
bmax=b+(length of cotter2)(130)
=57+(582)(130)
=57.96 mm
e) Minimum width of cotter
bmin=b−(length of cotter2)(130)
=57−(582)(130)
=56.03 mm