0
621views
0
0views
written 5.7 years ago by |
Series parallel equivalency Rule :
Transistors in series $(W/L)_{eq}$ = $\Sigma_{K(on)}(L/W)$
Transistors in parallel $(W/L)_{K}$ = $\frac{I}{K_{(on)}}(W/L)_{K}$
$V_{th}(inv) = \frac{V_{T,n} + (\frac{K_P}{K_n})^{1/2}(V_{DD} - |V_{T,P}|)}{1 + (\frac{K_P}{K_n})^{1/2}}$
substitute, $K_P = K_P/2$ & $K_n = 2K_n$
$V_{Tn}(No) = \frac{V_{T,n} + (\frac{K_P}{4K_n})^{1/2}(V_{DD} - |V_{T,P}|)}{1 + (\frac{K_P}{4K_n})^{1/2}}$
To get $V_{Th}(NOR2) = \frac{V_{DD}}{2}, V_{T,n} = |V_{T,P}|$ & $K_P = 4K_n$
4) NAND
$V_{Th}(NAND2) = \frac{V_{T,n} + 2(\frac{K_P}{K_n})^{1/2}(V_{DD} - |V_{T,P}|)}{1 + 2(\frac{K_P}{K_n})^{1/2}}$
To get: $V_{Th}(NAND2) = \frac{V_{DD}}{2}, V_{T,n} = |V_{T,P}|$ & $K_n = 4K_P$
In the worst case,
$C_L$ = Sum of all parasitic cap.
ADD COMMENT
EDIT
Please log in to add an answer.