written 5.7 years ago by |
CMOS Inverter
Find out $V_{TH}$,
When $V_{in} = V_{TH}$
i.e. region c of operation of CMOS inverter
Both pmos and nmos transistors are in saturation
$I_L(sat) = I_D(sat)$
$\frac{K_P}{2}[V_{in} - V_{DD} - V_{TP}]^2 = \frac{K_n}{2}[V_{in} - V_{TD}]^2$
$V_{in}(1 - (\frac{K_P}{K_n})^{1/2}) = V_{Th} + (\frac{K_P}{K_n})^{1/2} - V_{DD} - V_{Tp}$
substitute $V_{in} = V_{Th}$
=> $V_{Th} = \frac{V_{TOD} + (\frac{1}{K_R})^{1/2}(V_{DD} + V_{TOP})}{(1 + (\frac{1}{K_R})^{1/2})}$
if $K_P = K_n$ and $V_{ToD} = |V_{Top}|$,
$V_{Th} = \frac{V_{ToD} + V_{DD} + V_{Top}}{2}$
$V_{Th} = \frac{V_{DD}}{2}$
Design of CMOS inverter:
$V_{Th} = \frac{V_{TOD} + (\frac{1}{K_R}(V_{DD} + V_{TOD}))^{1/2}}{1 + (\frac{1}{K_R})^{1/2}}$
Solve if for $K_R$ to get the desired values of V_{Th}
$K_R = \frac{K_n}{K_P}(\frac{V_{DD} + V_{TOD} - V_{Th}}{V_{Th} - V_{TOD}})^2$ -------------(1)
But for ideal inverter $K_R$ = 1 & $V_{Th} = \frac{V_{DD}}{2}$
$K_R = (\frac{K_n}{K_P})_{ideal} = (\frac{V_{DD} + V_{TOP} - V_{DD}/2}{\frac{V_{DD}}{2} - V_{TOD}})^2$
for a symmetric VTC,
Then it reduces to
($K_R = \frac{K_D}{K_P}$) = 1
i.e. $\frac{\mu_n C_{OX}}{\mu_p C_{OX}} = \frac{(W/L)_P}{(W/P)_n}$
if $C_{OX}$ of pmos = $C_{OX} of nmos$
$(W/L)_P = 25(W/L)_n$
For a symmetric CMOS inverter :
$V_{IL} = \frac{1}{8}[3V_{DD} + 2V_{TOD}]$
$V_{IH} = \frac{1}{8}[5V_{DD} - 2V_{TOD}]$
$V_{IL} + V_{IH} = V_{DD}$
$NM_L = V_{IL} - V_{OL} = V_{IL} - 0 = V_{IL}$
$NM_H = V_{OH} - V_{IH} = V_{DD} - V_{IH}$
Asymmetric CMOS inverter :
$V_{OH} = V_{DD}$
$V_{OL} = 0$
$V_{IL} = \frac{2V_{out} + V_{TOP} - V_{DD} + K_RV_{Th}}{1 + K_R}$
$V_{IH} = \frac{K_R(2V_{out} + V_{TOP}) + V_{DD} + V_{TOP}}{1 + K_R}$
$V_{TH} = \frac{V_{TOD} + (1/K_R)^{1/2}(V_{DD} + V_{TOD})}{(1 + (1/K_R)^{1/2})}$
For Symm.
inv $V_{TH} = \frac{V_{OD}}{2}$
For Resistive load nmos Inverter :
$V_{IL} = V_{TOD} + \frac{1}{K_nR_L}$
$V_{IH} = V_{TO} + (\frac{8V_{DD}}{3K_nR_L})^{1/2} - \frac{1}{K_nR_L}$
$V_{OL} = V_{DD} - V_{TOD} + \frac{1}{K_nR_L} - ((V_{DD} - V_{TO} + \frac{1}{K_nR_L})^2 -\frac{2V_{DD}}{K_nR_L})^{1/2}$
$V_{OH} = V_{DD}$