0
835views
Module 1 : Unit 1
1 Answer
0
0views

MOSFET

1) Functioning/Working & types & Symbol.

2) Equations

3) Short channel effects

  • DIBL

  • Hot carrier effects

  • Subthreshold current

  • Velocity saturation

  • Mobility degradation

4) Impact of substrate bias

5) Channel length Modulation

enter image description here

Types

1) Enhancement

  • NMOS

  • PMOS

2) Depletion

  • NMOS

  • PMOS

enter image description here

Transfer Characterstics

enter image description here

$V_{TO} = \phi_{GC} - 2\phi_F - \frac{Q_{BO}}{C_{OX}} - \frac{Q_{OX}}{C_{OX}}$

1. Channel Length Modulation

$I_D(sat) = \frac{U_nC_{OXW}}{2L}(V_{GS} - V_T)^2(1 + \lambda V_{DS})$

$\lambda$ = Channel length modulation coeff

enter image description here

2. Substrate Bias effect

$V_T(VSB) = V_{TO} + \nu((|2\phi_F| + VSB)^{1/2} - (|2\phi F|)^{1/2})$

$I_D(lin) = \frac{U_nC_{OXW}}{2L}[2(V_{GS} - V_{T(VSB)})V_{DS} - V_{DS}^2]$

$I_D(sat) = \frac{U_nC_{OXW}}{2L}[V_{GS} - V_{T(VSB)}]^2$

$V_{SB}$ and $\nu$ = +ve for nmos

$V_{SB}$ and $\nu$ = -ve for pmos

enter image description here

1) Constant field scaling

2) Constat Voltage scaling

-> Device dimensions

W, L, Xj, $T_{OX}$

-> Potentials and supply

$V_{DD}, V_{TO}$

-> Doping densities

NA, ND

3) Impact OnKey parameters - i) Cox

ii) Id

iii) Power Dissipation

iv) Power Densities

v) Current density

enter image description here

S.no. Device Dimensions Const field scaling Const voltage scaling
1. Chanel Length (L) $L^{'} = L/S$ $L^{'} = L/S$
2. Channel width (W) $W^{'} = W/S$ $W^{'} = W/S$
3. Junction width (Xi) $Xj^{'} = Xj/S$ $Xj^{'} = Xj/S$
4. Oxide Thickness (Tox) $T_{OX}^{'} = T_{OX}/S$ $T_{OX}^{'} = T_{OX}/S$
5. Supply Voltage $V_{DD}$ $V_{DD}^{'} = V_{DD}/S$ Remain Unchanged
6. Threshold Voltage $V_{To}$ $V_{To}^{'} = V_{To}/S$ Remain Unchanged
7. Doping densities $NA^{'} = SNA$ $NA^{'} = S^2NA$
8. $C_{OX}$ $C_{OX}^{'} = S.C_{OX}$ $C_{OX}^{'} = S.C_{OX}$
9. $I_D$ $I_D^{'} = I_D/S$ $I_D^{'} = I_D.S$
10. Power dissipation $P^{'} = P/S^2$ $P^{'} = P.S$
11. Power density $P^{'}/A = P/A$ $P^{'}/A = S^3P/A$
12. Current density $I_D^{'}/A = S.I_D/A$ $I_D^{'}/A = S^3.I_D/A$

1) $C_{OX} = \frac{E_{OX}}{T_{OX}} = \frac{E_{OX}}{T_{OX}}.S$

2) $I_D^{'}(lin) = \frac{I_D(lin)}{S}$

Similarly,

$I_D^{'}(sat) = \frac{I_D(sat)}{S}$

3) Power Dissipation

$P^{'} = P/S^2$

4) Power density

$\frac{P^{'}}{Area} =\frac{P}{Area}$

5) Current density

$\frac{I_D^{'}}{Area} = S\frac{I_D}{Area}$

Cross Sectional view and top view (mask view) of a typical n-channel MOSFET

enter image description here

enter image description here

Total Capacitance Cut-Off Linear Saturation
$C_gb(total)$ $C_{OX}.WL$ 0 0
$C_gd(total)$ $C_{OX}.WL_D$ 1/2$C_{OX}.WL$ $C_{OX}.WL_D$
$C_gs(total)$ $C_{OX}.WL_D$ 1/2$C_{OX}.WL$ 2/3$C_{OX}.WL$

enter image description here

3D view of $n^{+}$ diffusion within the p-substarte.

$C_{Sb}$ = Volatage dependent juction cap $C_{db}$ = Volatage dependent juction cap

Dimensions = Y, Xj and UN

Abrupt PN junction profiles are assumed

(2), (3), (4) => surrounded by $p^{+}$ regions

(1) => Surrounded by p

(5) => Surrounded by p substrate

Channel stop implant = 16 NA

Type Area $Ju^n$ Depletion Cap
$n^{+}/P$ WXj (1)
$n^{+}/P^{+}$ yXj (2) $C_{jo} = (\frac{E_{si}}{2}q(\frac{N_A + N_D}{N_A + N_D})\frac{1}{\phi_o})^{1/2}$
$n^{+}/P^{+}$ W.Xj (3)
$n^{+}/P^{+}$ Y.Xj (4) $\phi_o = \frac{KT}{q}ln(\frac{N_AN_D}{n_i^2})$
$n^{+}/P$ Wy (5)

During Dynamic process, Junction cap varies due to change in depletion layer as $V_{ds}$ changes.

Junction Capacitances :

  • Voltage dependent source substrate $E_1 C_{ab}$ junction to depletion capacitance.

  • It is due to depletion region surrounding the respective S & D diffusion regions embeded in the body.

  • Both junction are reversed biased under normal conditons

  • Junction cap is function of applied voltages.

Please log in to add an answer.