written 5.8 years ago by |
Mz=3.34KN.m [up lift]
My=0.9$\times\frac{wdy\times l^{2}}{8}=0.9\times\frac{0.19\times 4^{2}}{8}$
My-0.342 KN.M
using E=2G[1+$\mu$].....Take $\mu$=0.3]
2$\times 10^{5}$=2g[1+0.3]
G=76.92$\times 10^{3}N/mm^{2} $ Mpa
hy=[100-6.4]=93.6mm
$I_{b}=\sum\frac{b.t^{3}}{3}$
=$\frac{2\times500\times 6.4^{3}}{3}+\frac{93.6\times4^{3}}{3}$
It=10.73$\times 10^{3}$
Iw=[1-$\beta_{f}]\beta_{f}\times Iy\times hy^{2}..... \beta_{F}=0.5]$
=[1-0.5]$\times0.5\times24.8\times10^{4}\times93.6^{2}$
=543.18$\times 10^{6}$
LLT=4000mm
Mc0=$\sqrt{(\frac{\pi^{2}EIy}{(LLT)^{2}})[GIe+\frac{\pi^{2}EIw}{(LLT)^{2}}]}$
=5.23$\times10^{6}$ N...
$\lambda LT=\sqrt{\beta_{b}\times Z_{p}fy/Mcr}\leq \sqrt{1.2Z_{c}\times fy/Mcr}$
=1.35$\leq$1.37
safe
$\phi_{lt}=0..4[1+\alpha LT(\lambda LT-0.2)+\lambda LT^{2}]$=1.53
$\kappa_{LT}=\frac{1}{\phi_{LT}+[\phi^{2}_{LT}-\lambda^{2}_{LT}]^{0.5}}$=0.44
fing =$\kappa _{LT}\times\frac{fy}{\gamma mo}$=100MPa
Mdz=B$_{b}Z_{p}\times fdb$
=1$\times 3.809\times 10^{6}$ Nmm
=3.809$\times 10^{4}$ N.mm
using interaction equation
$\frac{Mz}{Mdz}+\frac{My}{Mdy}\leq$ 1
$\frac{3.34}{3.81}+\frac{0.342}{1.92}\leq$ 1
1.05$\leq$ 1 unsafe
C] Design of Bottom member [L$_{1}, L_{2}]$
Reaction
Using method of joint (L$_{1}, L_{2})$
=0($\uparrow$=$\downarrow$)
sin 30=1
=-10KN
EH=0$(\rightarrow)$
L$_{1}L_{2}$+L$_{1}U_{1}$
cos 30$^{\circ}$=0
L$_{1}L_{2}$=8.66 kN(T)
$\sum v=0(\uparrow=\downarrow)$
4.8+L$_{1}u_{1}sin 30^{\circ}$=0.8
L$_{1}u_{1}$=-8kN
$\epsilon H=0(\rightarrow=\leftarrow)$
L$_{1}L_{2}+L_{1}U_{1}cos 30^{\circ}$
L$_{1}L_{2}=6.93KN(T)$
$\sum V=0(\uparrow=\downarrow)$
L$_{1}U_{1} $sin 30 +1.62 30
60$^{\circ}$=13.60
L$_{1}U_{1}$=22.66K(T)
$\sum H=0(\rightarrow=\leftarrow)$
L$_{1}L=+L_{1}U_{1}$ cos 30=2.62 cos 30
L$_{1}L_{2}$=-18.32L[c}]