written 5.8 years ago by |
Given
h=6m[height upto eaves]
width w=9m
Ratio $\frac{h}{w}=\frac{6}{9}$=0.67
AS per table $\frac{1}{1}\leq\frac{h}{w}\leq\frac{3}{2}$
i] wind perpendicular to ridge [wind word]
WL$_{1}$=(-0.2-0.2)$\times$755.72= -302.29... Pa
WL$_{2}$=(-0.2+0.2)$\times$ 755.72=0
ii) Wind perpednicular to ridge [Lee wared]
WL$_{3}$=(-0.5-0.2)$\times 755.72$= -529.0 Pa
WL$_{4}=(-0.5+0.2]\times 755.72$= - 226.72 Pa
iii) Wind parallel to ridge[wind ward]
WL$_{5}=(-0.8-0.2)\times 755.72$= - 7555.72
WL$_{6}$=(-0.8+0.2)$\times$ 755.72 = -453.43 PAd
iv) Wind parallel to ridge(Lee ward)
WL$_{7}$=(-0.8-0.2)$\times$ 755.72 = -755.72Pa
WL$_{8}$=(-0.8+0.2)$\times $ 755.72= -453.43Pa
Max wind pressure = -755.72 Pa
= -0.756 KP$_{a}$( Uplift or section]
Total wind load on each intermedaite panel point
= -755.72 $\times$ sloping Area
= - 755.72$\times[1.73\times$4]
= -522.9.58 N
= -5.24kN
Total wind load on each end panel point
= -$\frac{5.24}{2}$= -2.62 kN